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Large-Scale Structure of the Earth’s Mantle and Inner Core

Determining the internal structure of the Earth has been one of the main focus of seismology, since
it can be related to the composition, dynamics and evolution of the planet. Large-scale perturbations
within the mantle and the inner core are sought in this study, using mainly splitting of the normal
modes, or free oscillations, of the Earth. This data set is complemented by gravity anomalies and
body wave travel times in mantle and inner core modelling, respectively.

Using the unique sensitivity of normal modes, three-dimensional models of shear wave speed,
compressional wave speed, and density within the mantle are obtained. The mode data limit the
models to be only large-scale, even degree structures. Nonetheless, the wave speed models compare
favourably with existing models constructed using other seismic data. The attempt to resolve density
variations for the mantle based upon seismic observations is the first of its kind, and the model shows
some interesting features. In particular, dense material is observed at locations of strong wave speed
reduction near the core-mantle boundary. In general, comparison of the various models suggests
that the mantle may not be as chemically homogeneous as previously thought.

The inner core is believed to be transversely isotropic, but the degree and complexity of anisotropy
varies wildly from one model to another, partly dependent on the type of data used. To obtain a
global model which satisfies normal mode observations, body wave absolute and differential travel
times, these three sets of data are inverted simultaneously. The resulting model does not vary with
radius, and is only weakly anisotropic. Analysis of misfits also indicates that the discrepancies
between existing models originate due to biased sampling, contamination from mantle structure,
and/or small-scale variations that may be in the inner core or the mantle.

However, the absolute travel times from antipodal distances show globally coherent deviations
from the above anisotropy model. They imply that anisotropy within the central 300 km of the Earth
differs significantly from the bulk inner core. The existence of such a distinct layer suggests various
possibilities for the elastic properties and chemistry of the inner core material, and the dynamics
and evolution of the Earth’s core.
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Preface

The work presented in this thesis began when Prof. Jerry X. Mitrovica, my undergraduate supervisor
at the University of Toronto, casually suggested that I go to Harvard University for the summer and
work with a seismologist. I was introduced to Prof. Jeroen Tromp, visited Harvard in April, and
started working in May.

The focus of this study is on analysing normal mode splitting for structure within the Earth.
We started by looking at mantle modes in order to constrain the mantle, and one of the results,
a three-dimensional density model is still a controversial issue. There are many tests performed
to convince the reviewers, but more importantly, ourselves, that normal mode can provide reliable
constraints on density variations. Most of the tests are presented in this thesis, including those
which are left out of published papers as supplementary material.

When we turned to inner core modes, we noticed a coherent non-zonal pattern. To better
understand this feature, we first wanted to know inner core anisotropy. This study began very simply,
using only mantle corrected inner core mode data. It quickly expanded to include absolute travel
times, and then differential travel times. The mantle modes were also re-introduced to the analysis
when the inversion scheme was changed to obtain mantle and inner core structure simultaneously.
This approach was beneficial: mantle density was constrained better with the additional modes, and
combination of various data isolated signal due to global anisotropy. With the new mantle and inner
core models, the mode data are explained quite well, and the peculiar non-zonal pattern in inner
core modes diminished significantly, although some of it is still left in residual splitting pattern.

About the time the inner core study began, Jeroen moved to Caltech, so this research was
done with Jeroen and my two new advisors, Prof. Adam M. Dziewoński and Prof. Göran Ekström.
Whenever I spoke about our inner core study, Adam would comment how strange it is that the
absolute travel time data from antipodal distances behave so differently than those from shorter
distances. At first, I attributed this to the small number of observations, but the pattern remained
even when the data set was divided into subsets. This, and additional analyses, led Adam and I to
propose that there is an inner-most inner core. The tests, I believe, give quite convincing evidence,
although it is true that the database is not large enough to robustly determine the axis of symmetry.

I consider myself fortunate to have had not one, but three great seismologists as my supervisors.
Jeroen was very generous and patient with me. Regardless of how basic or silly my questions may
be, he was willing to spend some time answering them. Usually, he would drop by at the end of
the day and say “how is life?” There were always too many things happening in life to describe, so
my typical response was “fine,” which, I later realised, was not a good way to start a conversation.
Nonetheless, we often had nice chats and it was clear that Jeroen cared much for my well being, and
perhaps, I was a little spoiled by that.

When I decided to stay at Harvard, Adam and Göran kindly agreed to be my supervisors. I
must admit that I was afraid of both of them at the beginning, especially Adam. But soon, I found
out that “a bit stiff” and “serious” outward look of Adam (as described in Naked Earth: The New
Geophysics) is just an appearance. He made efforts to know how and what I was doing, and that
was a great comfort. With his vast knowledge and experience of the field, he would make many
suggestions, more quickly than I could follow up. In fact, there are ideas that are still left unpursued.
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I hope to pursue them one day.

Adam’s first words, when he comes to the computer room, are “how are things?” I am yet to learn
what Göran’s favourite question is. Nevertheless, Göran’s comments intrigued me the most, and very
often, they reassured me that I was doing something reasonable. For some reason, he represented
security in my mind, and I benefitted much from it, particularly after a harsh review. I am also
grateful that he went through my thesis meticulously, making corrections or writing comments on
almost every other page. They were most valuable in revising this thesis. I sincerely thank my
supervisors for their kindness, various forms of encouragements, and putting up with me. Without
their guidance and care, I would not have accomplished as much, and my life as a graduate student
would have been rather miserable.

There are others who also made my being at Harvard one of the happiest times. For example, I
always had wonderful officemates who tolerated me: Dr. Gideon Smith, Dr. Weijia Su, Dr. Svetlana
Panasyuk, Dr. Dimitri Komatitsch, and Bogdan Kustowski. I enjoyed chatting with them, to get
a glimpse of how they work, and to learn some useful tricks. I also owe many thanks to others
in the seismology group to whom I could turn whenever I had a problem: Meredith Nettles, Dr.
Erik Larson, Dr. Yu (Jeff) Gu, Dr. Xian-feng Liu, Dr. Lapo Boschi, Karen Felzer, Dr. Rachel
Abercrombie, Dr. Mike Antolik, and Jianfeng Pan. In particular, Karen not only put up with my
odd habits as a housemate, but she helped revising the thesis. I would also like to thank technical
and other assistances I got from William Toth, Kathy Harrow, and Michael Barrera. It amazes me
that everyone in the group is so willing to help, which makes this place so charming. I am proud to
have been a part of it.

There are others outside of the seismology group who made being a student here more exciting
and a happy experience. Prof. Richard J. O’Connell gave me many thoughtful comments and remarks
which were very valuable and often cheered me up. He always received me happily in his office for
consultation or anything else, and his numerous good advice were much appreciated (including a
suggestion to use lard for pie pastry, although, even with this, I still can’t get it right). I also thank
kindness shown to me by Dr. Renata Dmowka and Prof. Jim Rice. Dinners at their home were fun
with good conversation, and I enjoyed every one of them. I will not forget that both Renata and
Jim spent few hours talking to me when I was going through the difficulties of deciding whether to
go to Caltech or to stay at Harvard.

Spending my time with Sybil and Adam Dziewoński was always pleasant, but especially so at
their beautiful home with the prize garden. I spent many relaxing and happy afternoons with
them, most of which were more refreshing than being home in Canada. Sybil and Adam generously
pampered me, more than I probably deserve. I particularly admire Sybil. I have never met such a
strong, independent, and intelligent woman who is, at the same time, so affectionate. I am truly
grateful for what they have done for me in the last few years.

I would not be finishing up my thesis as I do now, without continual encouragements, advice, and
moral support from Jerry X. Mitrovica. In fact, I do not think I would be in geophysics if he did not
teach the first year physics course in 1994. Jerry is a great source of inspiration, wonderful mentor
and friend. He helped me not only scientifically, but also with mundane things such as answering my
banal questions (e.g, what is a CV?) and deleting/adding the’s and a’s in my manuscripts. Meeting
him at the University of Toronto was my luckiest encounter, and I can never thank him enough
(including hundreds of colour figures which almost bankrupted him). Jerry, thank you so much for
guiding me throughout my undergraduate and graduate years.

Finally, I would like to thank my parents, Hiromi and Takashi Ishii, for their understanding and
support. Care packages from Canada and Japan brought wonderful surprises and change to busy
but somewhat monotonous days. I am happy to announce that the future we discussed at length on
the phone (i.e., my being jobless and living at their expense) does not appear to be an immediate
possibility. I would also like to thank my sister Chiaki, who endured long hours of my hopeless
babbling. I do sympathise that it must be difficult to have me as an older sister.

I tried to shorten this thesis as much as possible without leaving out too much detail. I doubt
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that no one (with the exception of Göran, Adam, Rick, Prof. Jeremy Bloxham, and perhaps Jeroen
and Jerry) is going to read it fully, but if it is still too long, well, my apologies.

with gratitude,
Miaki Ishii

March 07, 2003
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Chapter 1

Introduction

Most of the Earth’s interior is not physically accessible, due to rapidly increasing temperature and
pressure. Seismic energy propagating through the Earth, recorded at seismic stations scattered on
the surface, provide valuable data for understanding the internal properties. Early studies have
documented that there are distinct layers within the Earth: the crust, mantle, outer core and inner
core. Models of radially varying seismic wave speeds and density can be interpreted for the bulk
composition of various layers, however, they cannot be immediately related to dynamic processes.
Furthermore, observations indicate that there are significant deviations from these one-dimensional
models, i.e., lateral variations and anisotropy. A brief description of each layer is given here to
illustrate the motivation for the study undertaken in the following Chapters.

The crust is the layer with the strongest lateral variations both in terms of its thickness (oceanic
crust is about 5 km thick, whereas continental crust can be as thick as 80 km), elasticity, and density.
Fortunately, this is also the best sampled layer with rock samples, surface waves, topography, and
so on. The properties of the crust are not investigated in this study, but data sampling deeper
structure inevitably contain signal from the crust. Therefore data are corrected for crustal structure
using an existing crustal model.

The mantle extends from 3500 to 6300 km radius of the Earth. It consists mainly of silicates and
oxides of magnesium and iron, whose density results in nearly constant gravitational acceleration
from the core-mantle boundary to the surface (e.g., Dziewoński & Anderson, 1981). Convection
within this layer is driven by density variations, and is observed at the surface as plate tectonics.
Much of seismic tomography efforts focus on the mantle, because lateral variations in seismic wave
speeds can be related to this dynamic process. For example, images of subducted lithosphere (e.g.,
van der Hilst et al., 1997), depending upon whether it reaches the core-mantle boundary or not, give
an indication of the mode of mantle convection (i.e., layered or whole mantle). Undulations of various
discontinuities within the mantle also provide information on convection, as well as temperature and
chemical variations (e.g., Gu et al., 1998). Seismic models can be compared with geochemical
or mineralogical observations. Various geochemical signatures require different reservoirs within
the mantle, which must be consistent with seismic images. Furthermore, regions of slow wave
propagation in the deep mantle, associated with rising plumes, are often considered in conjunction
with the chemistry of oceanic island basalts. Suggestions of compositional variations within the
mantle, especially near the core-mantle boundary, have stimulated experiments and calculations of
mantle minerals.

Tomographic models are also used as the input for obtaining other properties of the Earth’s
interior. For example, data such as gravity field variations, glacial rebound, and plate velocities,
are inverted for mantle rheology using density distribution obtained from variations in seismic wave
speed. Because there are significant consequences and applications for three-dimensional model of
the mantle, seismic tomography has become a very popular topic of study. Most mantle models are
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given in terms of seismic wave speeds, but a density model would be more desirable in geodynamic
studies. Such a model will take away one source of uncertainty, the relationship between variations
in seismic wave speed and density distribution.

The outer core is the shell between 1200 and 3500 km radius. It is made up of liquid iron with
a small amount of light elements. Because of the heavy iron, gravitational acceleration increases
almost linearly with radius within the core to a nearly surface value at the core-mantle boundary.
Viscosity of the outer core is estimated to be close to that of water (Gans, 1972; Poirier, 1988; de
Wijs et al., 1998), and convection of iron in this layer generates the magnetic field. The liquidity and
vigour of convection destroys heterogeneities with seismically detectable strength. Consequently, the
outer core is assumed to be homogeneous throughout this study.

The solid inner core beneath the outer core is about 1200 km in radius, i.e., 30% smaller than
the Moon; nonetheless, its iron composition makes it 35% heavier than the Moon. In comparison
to Earth, the inner core constitutes less than 2% of Earth’s mass occupying less than 1% of its
volume. This tiny inner core has played and continues to play an important role in the evolution
of the planet. Growth of the inner core provides a source of thermal (Braginsky & Roberts, 1995;
Lister & Buffett, 1995) and compositional (Braginsky, 1963; Gubbins, 1977; Loper & Roberts, 1978)
buoyancy for powering the geodynamo, and the solid sphere at the centre of the Earth acts to
stabilize the magnetic field (Hollerbach & Jones, 1993; Glatzmaier & Roberts, 1995a). However,
the inner core remains a poorly understood region compared to other layers because most seismic
waves do not sample it and the extreme pressures and temperatures are not easily reproduced in
the laboratory.

Unlike the mantle, the inner core can be sampled only by seismic methods. Studies have revealed
that the inner core has some peculiar properties. Waves passing through the inner core travel at
different speeds depending upon the direction in which they are propagating. Furthermore, some
data suggest that the inner core may be rotating faster than the Earth itself. This super rotation has
been used to constrain viscosity of the inner core (Buffett, 1997; Creager, 1997). However, models
of anisotropy and super rotation vary considerably. Chapter 4 investigates anisotropy of the inner
core and constructs a model which is consistent with a suite of disparate seismic observations.

This thesis addresses the question of large-scale variations within the mantle and inner core by
mainly analysing seismic data. Chapter 2 presents background information on the data, theory,
and modelling approach. The successive Chapters, 3 through 5, examine results for mantle, inner
core, and a new region at the centre of the Earth, the inner-most inner core. The final Chapter
discusses the importance and implications for internal structures from both seismological and non-
seismological points of view.
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Chapter 2

Data and Theory

2.1 Material Properties

Seismological studies of the Earth’s interior focus upon elastic properties and density of the internal
material. Assuming that only small stresses act on the material, stress and strain are related linearly
through a fourth-order elastic tensor Λ. Even though it has 81 elements (3 × 3 × 3 × 3 elements),
physical conditions reduce the number of independent parameters to 21 without loss of generality.
A conventional shorthand expresses the elements of this fourth-order tensor with only two indices.
This notation, often used by engineers, assign a single index (ranging from 1 through 6) for each
pair of original indices so that 1 = 11, 2 = 22, 3 = 33, 4 = 23 = 32, 5 = 13 = 31, and 6 = 12 = 21.
For example, Λ1123 is written as Λ14.

Determining all 21 independent elements of the elastic tensor may be the ultimate goal of seis-
mology, but unlike a laboratory experiment, there are many limitations which make such attempts
impractical. Instead, certain symmetry of a given material is assumed to further reduce the number
of unknowns. Most studies of the lateral variations within the mantle assume that the mantle mate-
rial behaves isotropically. Geodynamically, the vigorous mixing of the mantle is expected to produce
isotropic interior, and investigation of the bulk mantle suggest that very little anisotropy exists (e.g.,
McNamara et al., 2001). However, considerable anisotropy has been reported for the upper-most
and lower-most mantle, i.e., at the thermal boundary layers (e.g., Dziewoński & Anderson, 1981; Ek-
ström & Dziewoński, 1998; Kendall, 2000). Anisotropy of the bottom thermal boundary should not
affect results presented in this work, because data used to constrain mantle structure are sensitive
broadly to structure near the core-mantle boundary. Hence effects due to this anisotropic layer will
likely be small compared to the signal due to isotropic structure. This is not true for near-surface
anisotropy, and the effects of such anisotropy on isotropic modelling need to be addressed.

The inner core observations, on the other hand, is explained well with transverse isotropy. No
significant deviations from this anisotropy have been observed, although there are arguments that
the top-most inner core is isotropic (e.g., Song & Helmberger, 1995; Ouzounis & Creager, 2001; Song
& Xu, 2002). The tilt of the symmetry axis is a debated issue (e.g., Shearer & Toy, 1991; Creager,
1992; Su & Dziewoński, 1995; Song & Richards, 1996; McSweeney et al., 1997), but it is generally
inferred to be much less than 10◦ from the rotation axis. This degree of tilting is likely to be within
the uncertainty of the normal mode data. Transverse isotropy with the symmetry axis aligned with
the rotation axis is therefore considered for most part of this study unless otherwise noted.

2.1.1 Isotropy

A material is isotropic if its elastic properties are identical in all directions. For example, an aggre-
gate body with randomly oriented crystals exhibits this type of behaviour. An elastically isotropic
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material is described by two independent Lamé parameters µ and λ. The non-zero elements of the
elastic tensor are then,

Λ11 = Λ22 = Λ33 = λ+ 2µ,

Λ12 = Λ21 = Λ23 = Λ32 = Λ13 = Λ31 = λ, and

Λ44 = Λ55 = Λ66 = µ.

It is physically appealing to introduce the bulk modulus, κ = λ+ 2
3 µ, which represents incompress-

ibility of the material. The first Lamé parameter µ, i.e., the shear modulus, also has a clear physical
meaning: it describes the rigidity of the material. In isotropic modelling presented in this study, µ
and κ will be used as the two mineral physical properties rather than µ and λ.

Alternatively, an isotropic body can be characterised by two seismic wave speeds, compressional
wave speed υP and shear wave speed υS . This parametrisation is favourable in seismic studies,
where observations come from compressional and shear waves. The two wave speeds are related to
the parameters µ and κ as well as density ρ by

ρ υ2
S = µ and ρ υ2

P = κ+
4

3
µ.

Sometimes, compressional wave speed is replaced by bulk sound speed υφ to better relate seismology
and mineral physics. υφ is related to other parameters as

ρ υ2
φ = κ and υ2

φ = υ2
P − 4

3
υ2
S .

The mantle modelling in Chapter 3 considers three sets of parametrisations (µ, κ, ρ), (υS , υP , ρ), or
(υS , υφ, ρ) can be considered.

The radial variation of these parameters is relatively well understood. Consequently, much
effort has been concentrated in obtaining lateral variations. Most of mantle tomographic studies
investigate perturbations in isotropic parameters relative to a radial Earth model. Perturbations in
seismic parameters δ υS

υS
, δ υP

υP
, and

δ υφ

υφ
can then be related to perturbations in elastic moduli δ µ

µ

and δ κ
κ
, and density δ ρ

ρ
as

δ υS
υS

=
1

2

(

δ µ

µ
− δ ρ

ρ

)

,

δ υP
υP

=
1

2

[

υ2
φ

υ2
P

δ κ

κ
+

4

3

υ2
S

υ2
P

δ µ

µ
−
(

υ2
φ

υ2
P

+
4

3

υ2
S

υ2
P

)

δ ρ

ρ

]

, and

δ υφ
υφ

=
1

2

(

δ κ

κ
− δ ρ

ρ

)

.

Note that the reference values of υP , υS , and υφ are required to obtain perturbations in compressional
wave speed from perturbations in µ, κ, and ρ.

2.1.2 Transverse Isotropy

A material is transversely isotropic if it exhibits cylindrical symmetry about an axis. Love (1927)
uses parameters A, C, F , L, and N to specify this condition, where the parameters A and C are
related to the speed of compressional waves travelling perpendicular and parallel to the symmetry
axis, respectively, and the parameters L and N are associated with shear waves travelling parallel
and perpendicular to the symmetry axis, respectively. The last parameter F describes how the
waves are affected if they do not travel purely parallel or perpendicular to the symmetry axis. If
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one assumes that the symmetry axis is in the z-direction, Love’s parameters are related to elements
of the elastic tensor. The non-zero elements are

Λ11 = Λ22 = A Λ12 = A− 2N Λ44 = Λ55 = L
Λ33 = C Λ13 = Λ23 = F Λ66 = (Λ11 − Λ12) /2 = N.

In the investigation of the inner core anisotropy (Chapters 4 and 5), the average shift in a normal
mode frequency (i.e., at spherical harmonic degree zero) or constant offset in body wave travel times
is not considered (see Section 2.2.3). This reduces the number of independent parameters to three,
and following Woodhouse et al. (1986) and Tromp (1993, 1995b), they are defined as

α = (C −A)/A0, β = (L−N)/A0, and γ = (A− 2N − F )/A0, (2.1)

where A0 = ρ0υ
2
0 is calculated using the density ρ0 and compressional wave speed υ0 at the center of

the spherically symmetric and isotropic reference Earth model PREM (Dziewoński and Anderson,
1981). Physically, α and β describe the relative difference in elastic parameters for compressional
and shear waves travelling, respectively, parallel and perpendicular to the symmetry axis. Because
only compressional wave data are available for body wave studies of the inner core, the number
of independent parameters constrained by these data is further reduced to two. As discussed in
section 2.2.3, there are different ways of defining the two independent parameters. This study uses
definition following Morelli et al. (1986) with

ǫ =
C −A

2ρυ2
P

and σ =
−A− C + 2F + 4L

2ρυ2
P

,

where ρ and υ2
P are obtained from the reference model. The parameters ǫ and σ can also be written

in terms of α, β, and γ as

ǫ =
A0

ρυ2
P

α

2
and σ =

A0

ρυ2
P

(

2β − γ − α

2

)

. (2.2)

2.2 Data

There are various data observed at the surface that contain information about the internal structure
of the Earth. To investigate large-scale mantle heterogeneities, normal mode and gravity data are
used in Chapter 3. In contrast, inner core studies in Chapters 4 and 5 include only seismic data:
normal modes and body wave travel times.

2.2.1 Normal Modes

A normal mode, or free oscillation, of the Earth is a standing wave resulting from the constructive
and destructive interferences of seismic waves travelling in opposite directions around the globe.
A normal mode has a single characteristic frequency, however, any deviation of the Earth from
sphericity results in the splitting of the resonance peak. There are three mechanisms that cause
splitting of the modes: rotation, hydrostatic ellipticity and deviations from spherical symmetry such
as lateral variations within the mantle. The effects of Earth’s rotation and hydrostatic ellipticity
can be predicted, and the remaining splitting, represented as splitting functions, can be used to
constrain lateral variations in the mantle or transverse isotropy of the inner core.

Splitting Function Coefficients

A seismogram, s(t), is related to the normal modes by

s(t) = ℜe[r exp(iHt)s exp(iwt) exp(−qt)], (2.3)
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where r is the receiver vector combining instrumental response and modal displacement eigenfunc-
tions, H is the splitting matrix of the modes, s is the source vector containing information on the
earthquake mechanism, w is the characteristic frequency of the modes, and q is the decay rate
(Woodhouse & Girnius, 1982). The real part of splitting matrix H of an isolated mode can be
written as

H
mm′

= Wmm′

δmm′ +
∑

s,t

ctsγ
t
s, (2.4)

where m is the angular order of the mode’s singlet. The first term on the right hand side in
equation (2.4) describes the effects due to the Earth’s rotation and hydrostatic ellipticity:

Wmm′

= (a+ bm+ cm2)δmm′ ,

where b represents the first-order effect of the Earth’s rotation (analogous to Zeeman splitting of
hydrogen energy spectrum), and a and c represent the ellipticity and second-order rotation effects
(Dahlen & Tromp, 1998). Using the known rotation rate and ellipticity of the Earth, Wmm′

can
be calculated accurately (Woodhouse & Dahlen, 1978). The second term on the right hand side
of equation (2.4) represents the splitting of the resonance peak due to internal structure related to
spherical harmonic angular degree s and order t. Because isolated modes are standing waves, they
are only sensitive to even degree structure. Effects due to odd degree structure are cancelled by
destructive interferences, hence such structure cannot be modelled using isolated mode data. This
standing wave condition is realised by the factor γt

s which, for an isolated mode, is zero when s
is odd. The coefficients cts contain information on the internal structure as sensed by the given
mode. For this reason, they are sometimes referred to as structure coefficients. They are also called,
because they determine splitting of a resonance peak, splitting function coefficients.

The splitting of a mode can be visualised in two dimensions using splitting function coefficients.
Employing fully normalised spherical harmonics Y t

s (r̂) (Edmonds, 1960), where r̂ denotes a point
on the unit sphere, the splitting function σ is given by (Giardini et al., 1987)

σ(r̂) =
∑

s=0

s
∑

t=−s

ctsY
t
s (r̂).

Values of this two-dimensional map at a given point represents a local radial average of the underlying
structure which is filtered through the mode’s unique sensitivity to structure. Each mode has its
own splitting function, and for modes with high angular degrees, it is equivalent to a surface wave
phase velocity map. Depending upon whether the mode is dominantly sensitive to mantle or to the
inner core, one can divide modes into mantle and inner core modes. Splitting functions of some
mantle and inner core modes are compared in Figure 2.1. Because sensitivity to structure differs
from mode to mode, the splitting functions are also unique to each mode, but the mantle modes
are generally characterised by degree 2 order 2 pattern, whereas the inner core modes show strong
zonal dependence.

In earlier normal mode studies (Giardini et al., 1987; Ritzwoller et al., 1988; Li et al., 1991a),
splitting function coefficients of very long period, isolated spheroidal modes were determined for
degrees 2 and 4 (Giardini et al., 1987, 1988; Ritzwoller et al., 1988). The occurrence of several
large earthquakes in 1994–1996 has motivated new normal mode studies, and as a result, the quality
and quantity of splitting function coefficients have improved dramatically. Compared to earlier
data sets, higher-degree coefficients corresponding to smaller-scale structures have been measured
up to angular degree and order 12 (Ritzwoller & Resovsky, 1995; He & Tromp, 1996; Resovsky &
Ritzwoller, 1998). Another improvement to the data set comes from the addition of isolated toroidal
modes (Tromp & Zanzerkia, 1995; Resovsky & Ritzwoller, 1998). These modes provide valuable
additional constraints on shear velocity structure.

The sources of splitting function coefficients used in this study are summarised in Table 2.1.
This database includes both spheroidal and toroidal modes with a considerable number of inner core
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Figure 2.1: Splitting Functions of Mantle and Inner Core Modes
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Comparison of the splitting functions of dominantly mantle sensitive modes (left) and modes with
significant sensitivity to the inner core (right). The difference in pattern between the two types of
modes is clearly evident. These splitting functions are obtained using coefficients determined by He
& Tromp (1996).

Table 2.1: Summary of Splitting Function Coefficients of Isolated Modes

Number of Modes Modelling
Source S T mantle IC mantle joint
Tromp & Zanzerkia (1995) 0 11 11 0 • •
He & Tromp (1996) 67 0 36 31 • •
Resovsky & Ritzwoller (1998) 72 41 97 16 • •
Durek & Romanowicz (1999) 25 0 0 25 •
Masters et al. (2000a) 75 43 118 0 •

A table summarising the number of modes from a given source, divided by the type of modes:
spheroidal (S) or toroidal (T), and mantle or inner core (IC) modes. A mode is considered to be an
inner core mode if it has more than 0.1% of its energy is in the inner core. The modelling exercise
for which the data sets are included are also indicated. The “mantle” modelling inverts only for
mantle structure, and hence uses only the mantle modes from each source. In contrast, the “joint”
modelling attempts to simultaneously obtain mantle and inner core structure, and uses all splitting
function coefficients available.
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Figure 2.2: Dispersion Diagram with Modes Used in Modelling
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Dispersion diagrams identifying the mantle (blue), weak inner core (green), and inner core (red)
modes used in constraining the internal structure. The angular degree (ℓ) of modes goes up to 25 in
order to emphasise low ℓ overtone measurements. However, there are splitting function coefficients
for fundamental spheroidal and toroidal modes up to degree 60 and 49, respectively.
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sensitive modes. In some cases, the measurements of splitting coefficients of a mode is available
from different groups. All measurements are included as independent constraints, much like using
multiple rays passing through the same region in body wave tomography. To illustrate the range of
frequency, angular degree, and overtones covered by the data set summarised in Table 2.1, modes
with measurements are highlighted on the dispersion diagram in Figure 2.2. In Figures 2.3 and 2.4,
splitting function coefficients of mantle modes (used in mantle only inversion) from three different
sources are compared for their consistency. In general, the coefficients agree within assigned uncer-
tainty, which suggests that the source of splitting function coefficients will not influence modelling
results significantly.

The maximum angular degree s of splitting function coefficients vary from mode to mode (s ≤ 2ℓ),
and from source to source. Ritzwoller & Resovsky (1995) extended the maximum value to 12 in an
attempt to provide a better constraint on the smaller-scale structure. However, only coefficients up
to and including angular degree 6 will be considered in this study: higher degree data are not of
sufficient number and quality.

So far, only isolated or self coupled modes have been discussed, but analyses of coupled modes
exist (e.g., Resovsky & Ritzwoller, 1995, 1998; Kuo & Romanowicz, 2002). Coupled mode data give
some sensitivity to odd degree structure, but the number of available coefficients are still limited.
Although the mantle only inversion in Chapter 3 includes splitting function coefficients of coupled
modes provided by Resovsky & Ritzwoller (1998), discussion will focus on even degree structure and
isolated mode data.

Splitting Function Coefficients and Internal Structure

Because a splitting function is a radial average of internal structure, its coefficients are linearly related
to perturbations in properties δm and topography δd by (Woodhouse & Dahlen, 1978; Dahlen &
Tromp, 1998)

cst =

∫ a

0

∑

m

δmKm
s dr +

∑

d

δdst K
d
s , (2.5)

where Km
s and Kd

s denote the degree (s) dependent sensitivity kernel of a given mode to perturba-
tions in m or undulation on a boundary d. These kernels are defined in terms of the eigenfunctions
of the mode (Woodhouse, 1980; Li et al., 1991a) which are calculated using the reference one-
dimensional model PREM (Dziewoński & Anderson, 1981). Examples of sensitivity kernels for
mantle and inner core modes are shown in Figure 2.5. The first term on the right hand side of
equation (2.5) is the volumetric contribution with an integration over radius from the center to the
surface of the Earth with radius a. Therefore δm and Km

s are both dependent on radius. The sum-
mation over m represents a sum over material properties, such as lateral variations in wave speed or
anisotropy. The second term is a contribution from topography δd on various boundaries represented
by a sum over these boundaries, e.g., the core-mantle boundary and Moho. The sensitivity kernel
for undulations, Kd

s , tends to be small compared to Km
s , and this term is often neglected (e.g.,

Giardini et al., 1987; Ritzwoller et al., 1988; Resovsky & Ritzwoller, 1999a; Masters at al., 2000b).
The topography term is included in the mantle only inversion in Chapter 3, because free air gravity
data are strongly sensitive to boundary undulations. Because the trade off between topography and
density turns out to be not significant (Ishii & Tromp, 2001), the topography term is ignored in the
inversions where only seismic data are included.

In studies of mantle structure, modes with no sensitivity to the inner core are often selected. With
the assumption that the outer core is seismologically homogeneous (Stevenson, 1987), the integration
in equation (2.5) becomes one from the core-mantle boundary with radius b to the surface a. In a
seismic wave parametrisation, the equation becomes

cst =

∫ a

b

[(δυS/υS)st K
υS
s + (δυP /υP )st K

υP
s + (δρ/ρ)st K

ρ
s ] dr +

∑

d

(δd/a)st K
d
s . (2.6)
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Figure 2.5: Normal Mode Sensitivity Kernels for Isotropic Variations
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Sensitivity kernels (K2) for isotropic variations in shear wave speed (red), compressional wave speed
(blue) and density (green) for modes 1S4, a mantle sensitive mode (left), and 6S3, an inner core
sensitive mode (right). Internal discontinuities, inner core boundary (ICB), core-mantle boundary
(CMB), and 660-km discontinuity (660), are indicated.

The summation over discontinuities includes the free surface, the 410-km discontinuity, the 660-km
discontinuity, and the core-mantle boundary. Initially, topography on the 410-km discontinuity was
also included, but it was found to be not well resolved, presumably because it is dominated by
degree 1 variation (Gu et al., 1998; Flanagan & Shearer, 1998). Therefore, a model of topographic
variations on the 410-km discontinuity by Gu et al. (1998) is used to calculate a correction whenever
topography is included in the inversion.

Equation (2.6) can also be written in terms of relative perturbations in the mineralogical param-
eters as

cst =

∫ a

b

[(δµ/µ)st K
µ
s + (δκ/κ)st K

κ
s + (δρ/ρ)st K

ρ
s ] dr +

∑

d

(δd/a)st K
d
s , (2.7)

or in terms of relative perturbations in shear wave speed, bulk sound speed, and density as

cst =

∫ a

b

[

(δυS/υS)st K
υS
s + (δυφ/υφ)st K

υφ
s + (δρ/ρ)st K

ρ
s

]

dr +
∑

d

(δd/a)st K
d
s . (2.8)

All three representations will be used in mantle modelling.

Most mode studies reduce the number of unknown parameters by neglecting the effects of bound-
ary topography, and also by relating different parameters through scaling factors. For example,
relative variations in density can be related to shear wave speed by a scaling factor νρ, such that
δ ln ρ = νρδ ln υS , and compressional and shear wave speed variations can be related by another
scaling factor να, δ ln υP = ναδ ln υS . These relationships are expected to exist if lateral variations
in elastic properties are a result of temperature variations. The factors νρ and να can be constant
or depth dependent, and are obtained from studies of minerals (e.g., Anderson et al., 1968; Karato,
1993a), comparison of compressional and shear wave data (e.g., Souriau & Woodhouse, 1985), or
modelling of gravity data (e.g., Forte et al., 1994). Using these scaling relationships, equation (2.6)
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Figure 2.6: Normal Mode Sensitivity Kernels for Transverse Isotropy
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reduces to

cst =

∫ a

b

[(δυS/υS)st KυS
s ] dr, (2.9)

where KυS
s = KυS

s + ναK
υP
s + νρK

ρ
s . This approach has been used in early normal mode studies of

shear wave speed variations within the mantle (Ritzwoller et al., 1988; Li et al., 1991a), and also
recently by Resovsky & Ritzwoller (1999a). Alternatively, splitting coefficients can be inverted for
shear wave structure and scaling factors (e.g., Li et al., 1991b).

For a data set consisting of both mantle and inner core modes, the contribution due to the inner
core anisotropy cannot be neglected. Ignoring the topography term and representing variations in
the mantle by δm/m, the splitting function coefficients relate to structure by

cst =

∫ a

b

[(δm/m)st K
m
s ] dr for t 6= 0 or s > 4, (2.10)

and

cst =

∫ a

b

[(δm/m)st K
m
s ] dr +

∫ c

0

(

αKα
s + βKβ

s + γKγ
s

)

dr for t = 0 and s = 0, 2, 4.(2.11)

The parameter m represents υS , υP , and ρ, and α, β, and γ are depth dependent transversely
isotropic parameters as defined in equation (2.1). The first term on the right hand side of equa-
tions (2.10) and (2.11) gives the contribution from the mantle, and the second term in equation (2.11)
is the inner core contribution with integration from the center of the Earth to the inner core bound-
ary c. The conditions of t and s associated with the two equations are due to cylindrical anisotropy
with the symmetry axis aligned with the rotation axis: this type of anisotropy affects only the zonal
splitting coefficients with angular degrees 0, 2, and 4 (Tromp, 1995b). Some examples of sensitivity
kernels to transverse isotropy within the inner core are shown in Figure 2.6. Note that the sensitivity
peak in the middle to top part of the inner core. Because sensitivity kernels are calculated using
eigenfunctions, they must always vanish at the centre of the Earth.

Crustal Corrections

The crust, although very thin compared to the mantle, produces considerable splitting due to its
strong heterogeneity, especially for surface wave equivalent modes. Therefore, before splitting coeffi-
cients are inverted for mantle or inner core structure, it is essential to remove the crustal contribution.
This is achieved by predicting splitting due to crust using a crust model Crust5.1 (Mooney et al.,
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Figure 2.7: EGM96
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Geoid (deviations from gravitational equipotential surface) distribution obtained from the model
EGM96 (Lemoine et al., 1997, 1998a,b). The scale is in meters.

1998) and the sensitivity of each mode between the Moho and the surface. Consequently, the inte-
gration for the mantle term, in equations relating splitting coefficients to the internal structure, is
from the core-mantle boundary to the Moho discontinuity.

2.2.2 Free Air Gravity

To complement normal mode data in constraining the large-scale density variations within the
mantle, free air gravity data are included in mantle only inversion data set. Free air gravity is the
gravitational acceleration without surface topographic effects. This data is therefore sensitive to
mantle density distribution as well as topography on internal boundaries.

Free Air Gravity Variation

Surface gravity data used in this study is obtained from the Earth Gravitational Model 1996 (EGM96,
Lemoine et al., 1997, 1998a,b). This is a surface geopotential model expanded to spherical harmonic
degree 360, which corresponds to ∼ 55 km resolution. It is developed by combined analysis of
surface gravity data, satellite tracking data, and satellite altimetry measurements of the ocean
surface (Lemoine et al., 1997). The geopotential model is shown in Figure 2.7. Although spherical
harmonic coefficients are available up to degree 360, only those up to degree 6 are used in the
inversion to be consistent with the mode data.

Free Air Gravity and Internal Structure

The perturbed gravitational potential, δΦ, satisfies Poisson’s equation

∇2δΦ = 4πGδρ,
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where G is the gravitational constant and δρ denotes variations in density. Solving Poisson’s equa-
tion, we obtain

δΦ(r) = −G

∫

V

δρ(r′)

|r− r′| d
3r′ +G

∑

d

∫

S

[ρ]
+
− δd(r̂′)

|r− r′| d2r′,

where r = rr̂ is the position vector, [ρ]+− is the density jump at a discontinuity d, and δd is the
topography on that discontinuity. Using the relationship (Forte & Peltier, 1987; Dahlen & Tromp,
1998)

1

|r− r′| =
∞
∑

s=0

4π

2s+ 1

[min(r, r′)]s

[max(r, r′)](s+1)

s
∑

t=−s

Yst(r̂)Y
∗
st(r̂

′),

and expanding δρ, δd and δΦ in spherical harmonics as

δρ(r′) =
∑

s,t

δρst(r
′)Yst(r̂

′), δd(r̂′) =
∑

s,t

δdst Yst(r̂
′), and δΦ(r′) =

∑

s,t

δΦst(r
′)Yst(r̂

′),

the spherical harmonic coefficients of the gravitational potential at the surface a is related to density
and topographic variations by

δΦst(a) = − 4πG

2s+ 1

∫ a

b

δρst(r)
rs

as+1
r2dr +

4πG

2s+ 1

∑

d

[ρ]
+
−

ds+2

as+1
δdst .

In this study the free air gravity anomaly is used instead of the gravitational potential. The free
air gravity anomaly coefficients fst are related to the gravitational potential coefficients δΦst by

fst(a) = −3g(s− 1)

4πa2Gρ̄
δΦst(a),

where g is the gravitational acceleration at the Earth’s surface and ρ̄ is the average density of the
Earth. This relationship demonstrates the advantage in choosing the free air gravity over geopoten-
tial. The latter is dominated by spherical harmonic degree 2 component, but the free air gravity,
due to (s− 1) factor, has a whiter spectrum.

The relationship between the gravity coefficients and the relative variations in density and bound-
ary topography, is then, in a linear form much like for splitting function coefficients:

fst =

∫ a

b

(δρ/ρ)st K
′ρ
s dr +

∑

d

(δd/a)st K
′d
s , (2.12)

whereK
′ρ
s andK

′d
s are the density and discontinuity sensitivity kernels of the free air gravity anomaly

given, respectively, by

K
′ρ
s = −3g(s− 1)

2s+ 1

(

ρ

ρ̄

)(

rs

as+1

)

, and K
′d
s =

3g(s− 1)

2s+ 1

[

ρ

ρ̄

]+

−

(

d

a

)s+2

.

The kernels at various degrees are illustrated in Figure 2.8. Note that as the angular degree increases,
the sensitivity of the free air gravity coefficients are more concentrated near the surface.

The gravity modelling described above is based upon a static approach, and relates lateral
variations in density and boundary topography directly with gravity variations observed at the
surface. An alternative, more popular, approach is to consider the problem dynamically. Assuming
that mantle convection driven by lateral density heterogeneity dictates the topographic variations,
the topography term in equation (2.12) is replaced by a term involving density and viscosity of the
mantle. With the introduction of viscosity, equation (2.12) is changed to a non-linear form. Such
analyses of gravity field lead to models of radial viscosity profile (e.g., Hager & Clayton, 1989).
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Figure 2.8: Free Air Gravity Sensitivity Kernels
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The sensitivity of free air gravity to variations in mantle density (top, solid curve) and topography
(bottom, horizontal bars) on internal boundaries (free surface, 410-km and 660-km discontinuities,
and core-mantle boundary) at various degrees s.

Corrections

The model EGM96 contains signals which are not a result of mantle structure; the effects due to
crust and Earth’s ellipticity. A hydrostatic correction based upon Nakiboglu (1982) is applied to
gravity coefficients before they are analysed for mantle structure. The crust, on the other hand, is
mostly in isostatic equilibrium and produces only a small contribution to the gravity field. In an
early study of the joint inversion of normal mode and gravity data for mantle density heterogeneity,
crustal effects on gravity has been ignored (Ishii & Tromp, 1999). Careful comparison of inversion
results with and without the crustal correction to free air gravity confirmed that it is negligible, and
its influence is within the uncertainty of the inversion process (Ishii & Tromp, 2001). No further
correction, such as the effect due to lithosphere, is made to the free air gravity anomaly.

2.2.3 Body Wave Travel Times

In studying inner core anisotropy, travel times of compressional waves are included in the data set to
complement the mode splitting data. The PKIKP phase, observed between 120◦ and 180◦ epicentral
distance, is the only phase readily available for analysis of the inner core (Figure 2.9). This phase is
also referred to as PKPDF, and along with other PKP phases, PKPAB, PKPBC, and PKPCD, define
the PKP branch. PKPCD, also called PKiKP, is a ray that is reflected at the inner core boundary,
and because it is not analysed in later Chapters, its discussion is omitted. PKPBC and PKPAB turn
in the lower and upper parts of the outer core, respectively, and do not sample the inner core. In the
inner core study, deviations of arrival times of PKP phases from those predicted by a radial model
are interpreted as due to transverse isotropy. In the following sections, the relationship between the
travel time residuals and transverse isotropy is described in detail, followed by a discussion on two
types of travel time data.
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Figure 2.9: Geometry and Travel Times of the PKP Branch
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(a) Cross section of the Earth with ray paths for PKPAB (red), PKPBC (green), and PKPDF or
PKIKP (blue) at an epicentral distance of 150◦ and based upon PREM (Dziewoński & Anderson,
1981). The mantle is illustrated with a shear wave heterogeneity model of Gu et al. (2001) with
red and colours for slower and faster than average speeds, respectively. The cross section is along a
great circle between Africa (left) and the southwestern Pacific (right), crossing under Eurasia. The
outer core is shown by the white region, and the inner core is indicated by pale blue.
(b) A travel time table for PKP branch based upon PREM and an earthquake with a source depth
of 300 km.
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Figure 2.10: Geometry of the PKPDF in the Inner Core

ξ

A section of PKPDF ray path (blue) within the inner core (pale blue). Note that the PKPDF path is
practically a straight line, supporting the assumption used in the travel time calculation. The angle
this ray makes with the symmetry axis (arrow in red) is the ray angle ξ. At high values of cos2 ξ,
the ray is travelling parallel to the symmetry axis, and at small values of cos2 ξ, the ray is travelling
perpendicular to the symmetry axis.

Effects due to Transverse Isotropy

The relationship between seismic wave speed and the elastic tensor is given by the Christoffel equa-
tion

ρυ2 = k̂p̂ : Λ : k̂p̂, (2.13)

where υ is the speed of body waves, and unit vectors k̂ and p̂ give the direction of propagation and
polarisation of the wave, respectively. For a material with cylindrical symmetry, equation (2.13)
gives (Backus, 1965; Crampin, 1977)

ρυ2
P = A− 2(A− F − 2L) cos2 ξ + (A+ C − 2F − 4L) cos4 ξ,

where ξ is the angle between the direction of wave propagation and the symmetry axis (Figure 2.10).
For weak anisotropy, ρυ2

P can be written in terms of a reference value ρυ2
r and a small perturbation

due to anisotropy ρ δυ2
P . Letting ρυ2

r = A, then

2ρυ2
P δυP /υP = −2(A− F − 2L) cos2 ξ + (A+ C − 2F − 4L) cos4 ξ. (2.14)

Note that equation (2.14) includes terms involving A and F associated with compressional waves,
but also the parameter L which is related to shear waves travelling parallel to the symmetry axis.
This equation can be written in terms of associated Legendre functions P t

s such that

2ρυ2
P δυP /υP =

4

21
(−4A+ F + 2L+ 3C)P 0

2 (cos ξ) +
8

35
(A+ C − 2F − 4L)P 0

4 (cos ξ),

which illustrates why only zonal splitting function coefficients at degrees 2 and 4 are sensitive to
transverse isotropy with a symmetry axis in the z-direction.

Using equation (2.2), perturbations in compressional wave speed is written

δ υP /υP = ǫ cos2 ξ + σ sin2 ξ cos2 ξ + η0, (2.15)

where the term η0 is introduced to account for inadequacy of the reference inner core model (the
assumption that ρυ2

r = A). It also arises from uncertainties in the one-dimensional models outside
the inner core such as the mantle and the crust. Because the values of η0 may contain effects other
than inner core anisotropy, this parameter is ignored in discussion even though it is included as an
inversion parameter.
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Using trigonometry, equation (2.15) can be written in variety of ways. For example,

δ υP /υP = (ǫ+ σ) cos2 ξ − σ cos4 ξ + η0, (2.16)

which is convenient when plotting travel time residuals as a function of cos2 ξ, or

δ υP /υP =
1

2
(ǫ + 2 σ) cos(2ξ)− 1

8
σ cos(4ξ) + η1, (2.17)

which may be appealing when comparing results with parameters of azimuthally anisotropic ma-
terials. Note that in equation (2.17), the baseline shift includes contributions from both ǫ and σ,
i.e.,

η1 = η0 −
1

2
ǫ− 1

8
σ.

Travel time anomalies δt are related to small perturbations in compressional wave speed by

δt = −
∫

s

δυP
υ2
P

ds, (2.18)

where s is the ray path. It is assumed to be a straight line within the inner core, because compres-
sional wave speed varies only slightly with radius in the reference model (Figure 2.10). Combining
equations (2.17) and (2.18), δt depends linearly upon ǫ, σ, and η0 as

δ t (cos2 ξ) = − cos2 ξ

∫

s

(ǫ+ σ)
1

υP
ds+ cos4 ξ

∫

s

σ
1

υP
ds−

∫

s

η0
1

υP
ds. (2.19)

Travel Times as a Function of Two Variables

Instead of averaging only by values of cos2 ξ, travel times can be grouped by their ray angle ξ and
another variable φ (e.g., bottoming longitude). Such averaging is desirable when investigating if
the material is transversely isotropic or when determining the location of the symmetry axis. Using
equations (2.16) and (2.18), and writing cos2 ξ and cos4 ξ in spherical harmonics,

δ t (ξ, φ) =

{

−
∫

s

1

V

[

4

21

√

π

5
(7 ǫ+ σ)

]

ds

}

Y 0
2 (ξ, φ) +

[
∫

s

1

V

(

16
√
π

105
σ

)

ds

]

Y 0
4 (ξ, φ)

+

{

−
∫

s

1

V

[

2
√
π

(

γ0 +
1

3
ǫ+

2

15
σ

)]

ds

}

Y 0
0 (ξ, φ). (2.20)

This equation illustrates that the travel time distribution, plotted with colatitude ξ and east-
longitude φ, must be purely zonal if the inner core is transversely isotropic. Data distribution
in the ξ-φ space therefore tests whether the data are consistent with transversely isotropic material.
Two different parameters for φ are considered in this study, bottoming longitude φb and translated
surface intercept longitude φc. The former parametrisation is appropriate for verifying whether the
material has a transversely isotropic property, and the latter is suited for the search of the symmetry
axis.

For averaging data on the ξ-φ unit sphere, it is divided into 362 nearly equal area triangles
by triangular tessellation (Wang & Dahlen, 1995) whose nodes are used as the centres of 10◦ caps
(Figure 2.11). These caps are advantageous in that they are nearly equally spaced. On the other
hand, node distribution is not symmetric across the equator, implying that even when data are
symmetric, the cap averages may exhibit a pattern that is slightly different between the northern and
southern hemispheres. This definition of caps imply that data are smoothed considerably, because
the cap size (10◦ radius) is almost equivalent to the distance between nodes (11◦). Nonetheless, this
smoothing preserves variations at spherical harmonic degree 10 or less. Since signals of interest are
at degrees 0, 2, and 4 (equation 2.20), cap overlap and subsequent smoothing do not prejudice the
investigation. Caps with less than 3 measurements are excluded.
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Figure 2.11: Centres of 362 Caps

Nodes of triangular tessellation (green circles) with frequency 6 that are used as the centres of 10◦

caps for averaging data in the ξ-φ space.

Absolute Travel Times

The arrival time of the PKPDF can be measured and used for an investigation of the inner core.
This type of data are called absolute travel times. The absolute travel time data used in this study
were collected by the International Seismological Centre (ISC) between 1964 and 1996. Observations
range from the epicentral distances between 120◦ and 180◦, but between 140◦ and 150◦, the arrival
of precursors (140◦ to 145◦) and PKPBC (145◦ to 150◦) are often mis-identified as the arrival of
PKPDF (e.g., Shearer, 1994). This results from the proximity of the PKPBC branch to PKPDF

(Figure 2.9), and also from larger amplitude of the precursors and PKPBC compared to PKPDF.
Without these dubious data, the ISC data set consists of ∼ 325000 measurements in the distance
ranges 120◦–140◦ and 150◦–180◦.

The PKPDF arrival time is influenced by many factors, since it travels to and from the surface
through various regions of the Earth (Figure 2.9). To extract the signal due to the inner core, the
ISC data are corrected for the Earth’s ellipticity (Dziewoński & Gilbert, 1976), crust, mantle, and
earthquake locations. The mantle contribution is calculated using a degree 12 compressional wave
speed model (Su & Dziewoński, 1993), and the earthquakes are relocated using arrival times of P, S,
PKPDF, PKPBC, and PKPAB, in conjunction with the compressional wave model and a shear wave
speed model (Su et al., 1994).

The disadvantage of the ISC data set is its poor quality. The travel time picks are made by
different station operators, resulting in a considerable range in the reported arrival times. Treatment
of large travel time values (those with more than two standard deviations away) produce models of
the inner core with significant differences (e.g., Shearer et al., 1988; Shearer, 1994). Following Su &
Dziewoński (1995), a weight, w, is assigned to each travel time residual δt such that

w = 1.0 for |δt| ≤ 5 ;

w = exp
[

1− 0.04(δt)2
]

for 5 < |δt| ≤ 10 ; and

w = 0.0 for |δt| > 10 .

In addition, data are averaged to overcome individual quality problem. The data are first divided
into eight epicentral distance ranges: 120◦–130◦, 130◦–140◦, 150◦–153◦, 155◦–160◦, 160◦–165◦, 165◦–
173◦, and 173◦–180◦. Each range is chosen by considering the balance between the number of
measurements and the size of the range. Within a given distance range, the data are then averaged
according to their ray angle ξ, in bins of 0.1 in cos2 ξ. The number of data in each bin is plotted for
the eight epicentral distances in Figure 2.12.
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Figure 2.12: Number of the ISC Data for each Average
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Logarithm of the number of each average obtained from the ISC data set is plotted against cos2 ξ
for the eight distance ranges. The number at the top right corner of each panel is the total number
of data in that distance range.
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Differential Travel Times

Most of the inner core studies analyse the differential travel times rather than the absolute travel
times. The differential travel times are obtained by differencing the arrival times of PKPBC or
PKPAB and PKPDF. The advantage in using PKPBC−PKPDF or PKPAB−PKPDF comes from the
similarity in the ray paths (Figure 2.9): effects due to earthquake location, crust, and mantle are
significantly reduced. In fact, in differential travel time studies of the inner core, data are assumed
to contain signals only due to the inner core.

The differential travel times can be obtained from reports of PKPDF, PKPAB, and PKPBC

arrivals from the ISC Bulletin, but simultaneous reports of the three phases are rare and often
unreliable. Instead, the differential travel times are determined through careful waveform analysis
(correlating PKPDF waveform with that of PKPBC and PKPAB). The resulting data are of high
quality, but are limited in number. The differential travel time data set used in this study has been
compiled by Creager (1999, 2000) from measurements made by various researchers. This data set
uses the relocated earthquake catalogue of Engdahl et al. (1998), and the data are corrected for
ellipticity (Dziewoński & Gilbert, 1976). The predicted differential travel time based upon PREM
is also removed to enhance the travel time anomaly originating in the inner core.

There are 851 PKPBC−PKPDF measurements taken collected from studies by Creager (1992),
McSweeney (1995), Creager (1997), McSweeney et al. (1997), Tanaka & Hamaguchi (1997), and
Creager (1999). The data come from earthquakes between 1965 and 1995, and cover a distance
range from 145◦ to 160◦. PKPBC−PKPDF data with an epicentral distance greater than ∼ 153◦ use
diffracted PKPBC rays (PKPdiff

BC), travelling along the inner core boundary. These data involving the
diffracted PKPBC are removed from the differential travel time database, which reduces the number
of PKPBC−PKPDF data to 512. PKPdiff

BC−PKPDF data are treated separately, and used only in
an argument for anisotropy near the inner core boundary. To follow the averaging scheme for the
absolute travel times, the remaining PKPBC−PKPDF are grouped into 2 distance ranges, 145◦ to
150◦, and 150◦ to 153◦, and averaged for each 0.1 increment in cos2 ξ. Note that PKPBC−PKPDF

data provide information between 145◦ and 150◦ that is not available with the absolute travel times.
The narrow distance range of PKPBC−PKPDF observations, however, implies that the data are
only sensitive to the upper few hundred kilometers of the inner core. To extend the sensitivity,
PKPAB−PKPDF data are introduced.

There are 967 PKPAB−PKPDF measurements from five studies that span a distance range from
149◦ to 177◦ (Vinnik et al., 1994; McSweeney, 1995; Song, 1996; McSweeney et al., 1997; Creager,
1999). PKPAB rays propagating along the core-mantle boundary, instead of diving into the outer core
(i.e., diffracted PKPAB), are excluded from the database, reducing the number of data to 963. These
PKPAB−PKPDF measurements are divided into 4 distance range groups, 149◦ to 153◦, 153◦ to 160◦,
160◦ to 165◦, and 165◦ to 180◦. PKPAB−PKPDF observations at large epicentral distances allow
modelling of the inner core to the centre of the Earth. However, the two ray paths differ significantly
within the mantle, especially as the epicentral distance increases. The PKPAB path traverses the
lower-most mantle at a very shallow angle, and therefore is very sensitive to the strong heterogeneity
known to exist in this region (e.g., Julian & Sengupta, 1973; Dziewoński, 1984; Bréger et al., 2000;
Ritsema et al., 1998). In fact, there are studies of the D” region using PKPAB−PKPDF explaining
much of the signal without consideration of the inner core (e.g., Song & Helmberger, 1997; Tkalčić
et al., 2002). Because of the possible contamination by mantle heterogeneity, the PKPAB−PKPDF

data are down-weighted compared to PKPBC−PKPDF or PKPDF data in inversions.

Advantages and disadvantages of PKP data are summarised in Table 2.2 along with those for
the normal mode data.
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Table 2.2: Comparison of Inner Core Data

Data Advantages Disadvantages
Normal Mode • global sampling • poor depth resolution

• not sensitive to the central inner core
• includes effects from crust/mantle
• only for large-scale variations

PKPDF • numerous measurements • poor quality
→ good coverage • includes signal from structures

• constrains the entire inner core outside the inner core
PKPBC−PKPDF • high quality • limited number

• free from crust, mantle, & → laterally biased sampling
earthquake location effects (?) • constrains only shallow inner core

PKPAB−PKPDF • high quality • limited number
• free from crust, mantle, & • contamination from mantle
location effects (?)

• constrains the entire inner core

Summary of advantages and disadvantages associated with different data types used in inner core
modelling.

2.3 The Linear Inverse Problem

A radially dependent model δm can be expanded with radial basis functions Bk(r) as

δm(r) =

kmax
∑

k=0

δmk Bk(r).

For example, mantle shear wave variation coefficients (δυS/υS)st and inner core anisotropy parameter
α are expressed, respectively, as

(δυS/υS)st =

kmax
∑

k=0

(δυS/υS)
k
st B

M
k (r), and α =

pmax
∑

p=0

αp BI
p(r),

where superscripts M and I on the basis functions identify different basis functions used for mantle
and inner core. Using these representations, the model coefficients, e.g., (δυS/υS)

k
st, can be taken out

of the integration over radius or ray path. The linear relationship between splitting coefficients, free
air gravity anomaly, or travel times and internal structure can then be written in matrix notation
as

d = Km.

The vectors d and m contain data and model parameters, respectively, and the matrix K relates the
two vectors based upon the sensitivity kernels.

For mantle only inversion, the model vector contain lateral variations in elastic parameters,
density, and topography such that

m =
[

(δυS/υS)
k
st (δυP /υP )

k
st (δρ/ρ)kst (δd/a)st

]T

,

where T denotes the transpose. The dimension of this vector M is determined by the maximum
radial expansion and spherical harmonic degrees considered (note that there are 2s+1 independent
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angular orders for a given degree s). The data vector d includes splitting and free air gravity
coefficients at various values of s and t as well as from different normal modes so that

d = [ ncst fst ]
T ,

where the subscript n is used as a mode label. This is an N -dimensional vector where the value
N is the sum of the number of splitting function coefficients and free air gravity coefficients in the
database. The two vectors m and d are related by an N ×M -dimensional matrix

K =

[

n
kK

υS
s

n
kK

υP
s

n
kK

ρ
s

nKd
s

0 0 kK
′ρ
s K

′d
s

]

,

where the subscript k indicates that the element is obtained from integration of the product between
radial basis function and the sensitivity kernel. The model parameters may be changed or combined
as discussed in section 2.1.1. When the model vector does not include density and topography
variations, the free air gravity coefficients are removed from the database.

The vectors and matrix are similar for simultaneous inversion of mantle and inner core structure.
Expressing three volumetric perturbations of the mantle as δm/m,

m =
[

(δm/m)kst αp βp γp
]T

.

The data vector includes travel time data instead of gravity anomaly

d = [ ncst δtq ]
T
,

where the subscript q identifies the each travel time datum. The sensitivity kernel K takes the form

K =

[

n
kK

m
s

n
pK

α
s

n
pK

β
s

n
pK

γ
s

0 q
pK

α q
pK

β q
pK

γ

]

.

The second row of K describes how δtq is related to α, β, and γ, although the three parameters are
not linearly independent for these data.

The model vector is obtained by minimising the objective function

f(m) = [d− Km]T W [d− Km] + [m−m0]
T
D [m−m0] ,

where W is a diagonal matrix with dimensions N × N that assigns a weighting to each datum, D
is an M × M damping matrix, and m0 is an M -dimensional starting model vector. The damping
matrix D determines the degree to which the model vector m is forced towards the starting model
m0. A combination of norm, first, and second derivative damping is used to define elements of the
matrix D. A particular set of values is chosen such that the resulting model provides high variance
reduction with least amount of damping.

The diagonal elements of the data weighting matrix W are given by ω/σ2
i , where σi is the esti-

mated uncertainty of each datum di, and ω describes the relative weights assigned to differing types
of data. The values of σi for mode splitting coefficients are obtained from estimates of uncertainty
given by individual studies, some of which are illustrated as error bars in Figure 2.3. The free
air gravity coefficients are given a constant uncertainty, because they are expected to have similar
precision at low degrees considered in this study. Because average travel times are used in inversion
instead of individual measurements for both absolute and differential travel times, the standard de-
viations of the mean are used as error estimates. The prescribed values of ω dictates the importance
of one type of data with respect to mode splitting data set. So ω = 1 for splitting coefficients with
different values assigned to the free air gravity, PKPDF, PKPBC−PKPDF, and PKPAB−PKPDF

data sets. The values of ω for each data set is determined by a balance between the fit to mode data
and the fit to non-modal data, and in some cases, it is varied to explore the effects on the inversion
results.
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To take advantage of models based mainly upon travel time and waveform data, such models are
used as starting models, defining m0. The choice of models is shear wave speed model SKS12WM13
(Dziewoński et al., 1997), compressional wave model P16B30 (Bolton, 1996), and the 660-km dis-
continuity model of Gu et al. (1998). A density starting model is either zero or SKS12WM13 scaled
by a factor of 0.2, and the free surface has zero starting topography. The topography of the starting
core-mantle boundary is zero except for the excess ellipticity determined by Very Long Baseline In-
terferometry (Gwinn et al., 1986). Because there is a considerable variation between models of inner
core anisotropy (e.g., Shearer & Toy, 1991; Song & Helmberger, 1993; Tromp, 1993), no starting
model is included for model parameters of the inner core.

Minimising the objective function, the model vector becomes

m =
(

K
T
WK + D

)−1 (
K
T
Wd+ Dm0

)

. (2.21)

Neglecting the starting model term, and replacing data vector with Km
true, there is a relationship

between a model obtained from the inversion m and the true model mtrue,

m =
(

K
T
WK + D

)−1
K
T
WKm

true.

The matrix relating m and m
true, R =

(

K
T
WK + D

)−1
K
T
WK is called the resolution matrix. In

an ideal case, the resolution matrix is the identity matrix, but introduction of damping causes the
resolution matrix to deviate from it. Analysis of the resolution matrix provides an insight into the
effects of damping, especially in terms of the trade offs between different parameters (e.g., between
shear wave and density variations). The trace of this matrix represents the number of resolved
parameters, and is an useful indicator of model reliability.

The covariance matrix for the model parameters is given by (Menke, 1989)

C =
(

K
T
WK + D

)−1
K
T
WK

(

K
T
WK+ D

)−1
. (2.22)

The square root of a diagonal element of the covariance matrix
√
Cii defines the standard error

associated with the ith model parameter mi. However, in a damped least squares inversion, the
uncertainty associated with the model parameters is highly dependent upon the damping matrix
D and may not provide a realistic error estimate. For example, strongly damped parameters, i.e.,
parameters for which the corresponding elements in the damping matrix is large, are confined to a
small portion of the model space. These parameters cannot vary much from their starting values, and
hence the uncertainty calculated from the covariance matrix is very small. This does not mean that
these parameters are well constrained. Actually, they are given strong a priori damping, because
there are reasons to believe that these parameters cannot be modelled reliably with the available
data set.
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Chapter 3

Mantle Heterogeneity

3.1 Introduction

Collection of seismic data at global stations by International Seismological Centre (ISC) began in
the 1960’s. They provided information needed for mapping lateral variations within the mantle. The
first seismic tomography of the mantle was thus developed (Dziewoński, 1975), and the impact of
the tomographic model on Earth’s dynamics was quickly recognised (Dziewoński et al., 1977; Hager
et al., 1985). The initial model showed compressional wave speed heterogeneities within the lower
mantle (Dziewoński, 1975,1984), but this was soon followed by development of shear wave variations
(Woodhouse & Dziewoński, 1984; Nataf et al., 1986).

Because these tomographic models have significant implications and applications to the Earth
Science community, and because high quality and quantity data become available with time, gener-
ation of whole mantle tomographic models is now a standard practice. There are numerous models
of compressional wave speed (e.g., Inoue et al., 1990; Pulliam et al., 1993; Bolton, 1996; Robertson
& Woodhouse, 1996; Zhou, 1996; Su & Dziewoński, 1997; van der Hilst et al., 1997; Bijwaard et al.,
1998; Vasco & Johnson, 1998; Boschi & Dziewoński, 1999; Kárason & van der Hilst, 2001; Antolik
et al., 2003) and shear wave speed (e.g., Ritzwoller et al., 1988; Li et al., 1991a; Zhang & Tanimoto,
1993; Forte et al., 1994; Su et al., 1994; Li & Romanowicz, 1996; Masters et al., 1996; Robertson
& Woodhouse, 1996; Grand et al., 1997; Kennett et al., 1998; Liu & Dziewoński, 1998; Vasco &
Johnson, 1998; Ishii & Tromp, 1999; Resovsky & Ritzwoller, 1999a; Mégnin & Romanowicz, 2000;
Gu et al., 2001) models and the number of models continue to increase. There are variations between
models, but some common features also exist.

Near the surface, the strongest lateral variations are observed. These variations are dominated
by large-scale structures which correlate with surface tectonics. For example, continents and mid-
ocean ridges are characterised by faster and slower wave speeds, respectively. The strength of the
heterogeneities diminishes in the middle mantle. Moreover, heterogeneities of varying sizes are
observed, i.e., the power spectrum of lateral variation is whiter compared to that near the surface.
As the depth increases to the bottom of the mantle, both the size and strength of heterogeneities
increase. In particular, fast anomalies are observed in a ring around the Pacific, and there are two
large slow regions underneath the central Pacific and Africa which are interpreted as superplumes.
Modelling for bulk sound speed variations has a shorter history (e.g., Su & Dziewoński, 1997; Kennett
et al., 1998; Masters et al., 2000c), but one common and striking feature of the bulk sound model is
its strong global anti-correlation with the shear wave anomaly in the lower-most mantle.

Because body wave data are insensitive to lateral variation in density, attempts to determine the
density structure of the mantle have been made using the history of plate motion and subducted slabs
(Ricard et al., 1993; Lithgow-Bertelloni & Richards, 1998). Using surface waves, Tanimoto (1991) has
determined an upper mantle density model which is dominated by high degree components. There
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is also an attempt to obtain density variations directly from gravity anomalies and the surface plate
velocity field (Ye, 1989). However, this is a highly non-unique problem, and its resolution with depth
is nearly non-existent.

Free oscillations, unlike body waves, are sensitive to the density distribution in the entire mantle,
because the gravitational restoring force is important for long period waves. Despite this theoretical
sensitivity, most normal mode studies consider only lateral variations in shear wave speed, under
the assumption that variations in compressional wave speed and density are related to shear wave
structure (e.g., Ritzwoller et al., 1988; Li et al., 1991a; Resovsky & Ritzwoller, 1999a). The cur-
rently available normal mode database is large enough to allow for independent modelling of elastic
parameters and density. The aim of this Chapter is to construct models of wave speeds or elastic
moduli and density mainly from normal mode data. Although the mantle modelling presented here
relies on mode data, two different data sets are considered. Data from mantle sensitive modes are
combined with free air gravity coefficients to better constrain density structure in the first analysis.
In contrast, the second analysis uses only seismic data. It analyses both mantle and inner core sensi-
tive modes to obtain mantle and inner core structure simultaneously. This inversion includes travel
time data for a better constraint on inner core anisotropy which is discussed in following Chapters.

Because only splitting coefficients up to and including spherical harmonic degree 6 are included
in the data vector d, the mantle models obtained from inversions are also truncated at this degree.
Moreover, the mode database is dominated by isolated modes, hence the models consist solely of
even degrees. Chebyshev polynomials (Su, 1992) up to and including radial order 13 are chosen as
the radial basis functions unless otherwise noted.

3.2 Data Set 1: Free Air Gravity, and Mantle Sensitive Nor-

mal Mode

Inversions are performed with various parametrisations; seismic parametrisation, in terms of seis-
mic wave speeds; with mineralogical parametrisation, in terms of elastic moduli; and with hybrid
parametrisation, in terms of shear wave and bulk sound speeds. In addition, models are obtained for
cases where scaling between parameters are assumed (Section 2.2.1). The scaling factors are constant
throughout the mantle and take values of 0.55 for να, 0.2 for νρ, and 0.5 for relating variations in
shear wave speed to bulk modulus κ. There are many possibilities for defining the model vector m,
and a scheme to refer to different inversion results becomes necessary. To describe the model set, an
alphabet is assigned to each parameter: S for shear wave speed, P for compressional wave speed, M
for shear modulus, K for bulk modulus, B for bulk sound speed, R for density, and D for topography
on boundaries. Models are identified by which parameters are considered in the inversion. The
full parametrisation, i.e., without any scaling assumptions, are therefore named SPRD, MKRD, or
SBRD. When there are fewer than four letters in a name, the missing volumetric model has been
scaled to be part of shear wave or shear modulus model, and topography on boundaries are ignored.
For example, a model MK indicates that the model vector is defined in terms of shear and bulk
moduli; the density variations are scaled into shear modulus and boundary undulations are ignored.

Throughout the inversions presented in this Chapter, the same damping is applied to the two
elastic parameters, and the damping of the density model is required to be the same as, or slightly
greater than, that of the other two volumetric models. In order to obtain reasonable topography on
the free surface, the amplitude of topography on this boundary has been damped to a size which is
between the observed dynamic topography (Cazenave et al., 1989; Gurnis, 1990) and that predicted
from mantle flow calculations (Forte & Woodward, 1997). The 660-km discontinuity model has also
been damped strongly towards the model of Gu et al. (1998). Finally, damping on the core-mantle
boundary is determined by requiring that the peak-to-peak amplitude is in agreement with that of
Morelli & Dziewoński (1987).
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Table 3.1: Summary of Variance Reductions and χ2 Tests

Model VRm (%) χ2/N χ2/(N −M) VRg (%)
Starting Model 74 6.6

S 89 2.7 3.1 NA
M 89 2.7 3.1 NA
SP 90 2.5 3.3 NA
SB 90 2.5 3.4 NA
MK 90 2.5 3.3 NA

SPRD 92 2.0 3.5 96
SBRD 92 2.1 3.6 95
MKRD 92 2.1 3.6 95

Variance reduction of mode data VRm, gravity data VRg, χ
2/N , and χ2/(N −M), where N = 2850

is the number of even degree data and M is the number of even degree model parameters, achieved
for starting and various model parametrisations. The starting model is the full starting model with
two seismic waves, scaled density, and topography models.

3.2.1 Results

It would take up too much space to discuss results from every single inversion, so they have been
summarised in terms of statistical values. In Figures 3.1a and b, mode-by-mode improvements in
χ2/N are illustrated when the fit achieved by model SKS12WM13 is compared to the fit based upon
model S. Fundamental spheroidal modes (0S branch), which are sensitive to shear wave structure in
the middle mantle, show large improvements, indicating that mid-mantle shear wave heterogeneity
in model S is different from that in SKS12WM13. Improvements in fit to the toroidal modes are
not as obvious as for the spheroidal modes. When independent lateral variations in compressional
wave speed are introduced, spheroidal modes of low angular degree show the largest improvements
in fit (Figure 3.1c). These modes, particularly the fifth overtone branch, are generally more sensitive
to compressional wave heterogeneity. Because toroidal modes do not have any sensitivity to com-
pressional waves, it is counter-intuitive to see improvements in fit to fundamental toroidal modes
(Figure 3.1d). In model S, the shear wave model is forced to accommodate compressional wave
variations in order to fit the well-determined spheroidal modes, many of which have considerable
sensitivity to compressional wave structure. On the other hand, model SP allows for independent
variations in two seismic waves, such that modes sensitive to compressional wave structure no longer
alias this structure into shear wave structure. Hence the shear wave speed model is available to fit
the toroidal modes. The improvements in fit going from SP to SPRD are most evident in the low
degree, higher frequency spheroidal modes with significant sensitivity to density (Figure 3.1e). In
contrast, allowing for independent variations in density and topography does not affect the fit to
toroidal modes significantly (Figure 3.1f ).

The statistical results of the different inversions and parametrisations are summarised in Ta-
ble 3.1. Ideally, χ2/(N −M) decreases as M is increased, if the additional number of model param-
eters is warranted by the data. The models are over-parametrised in radius, therefore χ2/(N −M)
does not necessarily improve when the number of model parameters is increased. The statistical
validity of the increased number of model parameters from S to SPRD is investigated in Table 3.2.
The χ2/(Ne −Me) test is not useful when the models are over-parametrised, as in inversions with
Chebyshev polynomials up to order 13 (Table 3.1). Over-parametrisation with strong damping on
higher-order polynomials is preferred to allow data to dictate the radial variations in the models,
rather than parametrising the models with fewer degrees of freedom. To determine the number of
radial parameters that can be resolved by the data, the maximum Chebyshev polynomial order is
decreased until an effect on χ2/(N −M) is observed; this occurs at about order 7. When the models
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Figure 3.1: Mode-by-Mode Improvements in Fit
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Illustration of mode-by-mode improvements in fit when going from starting model SKS12WM13
to model S (Figures a and b), from S to SP (Figures c and d), and from SP to SPRD (Figures e
and f). Values of χ2/N ′, where N ′ denotes the number of splitting function coefficients for that
mode, is monitored for each individual spheroidal (left) or toroidal (right) mode. The modes are
binned into 3 groups of equal size: modes denoted by green circles show the most improvement in
fit, modes indicated by yellow circles are average, and modes denoted by red circles show the least
improvement.
(a) Improvements in χ2/N ′ for isolated spheroidal modes from SKS12WM13 to S.
(b) Same as in (a) but for toroidal modes. Note that the fit to these modes does not improve very
much compared to the spheroidal modes.
(c) Same as in (a) but for improvements in fit from S to SP. Compared to (a), modes with low
angular degrees improve in fit.
(d) Same as in (b) but for improvements in fit from S to SP. The fundamental toroidal modes show
large improvements in fit.
(e) Same as in (a) but for improvements in fit from SP to SPRD.
(f ) Same as in (b) but for improvements in fit from SP to SPRD. Density heterogeneity does not
affect the fit to toroidal modes significantly.
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Table 3.2: Statistical Results with Different Number of Chebyshev Polynomials

Model VR (%) χ2/N χ2/(N −M)
S (K13) 89 2.7 3.1
SP (K13) 90 2.5 3.3

SPRD (K13) 92 2.0 3.5
S (K7) 88 3.0 3.2
SP (K7) 90 2.5 2.9

SPRD (K7) 92 2.1 2.8

Comparison of statistical results for a variety of model and radial parametrisations. K13 indicates
that models are expanded radially in Chebyshev polynomials up to and including order 13 (over-
parametrised inversion), and K7 models use Chebyshev polynomials up to and including order 7.

are expanded radially up to order 7, χ2/(N −M) improves with the addition of compressional wave
speed, and again when density and boundary topography are added. Masters et al. (2000b) find
that the fit to their data set does not improve when an independent density model is allowed for
in their inversions, leading them to conclude that density inversions are premature. This may have
arisen from the difference in mode database, or from the a priori damping used in the analysis.

Because individual models do not vary significantly with changes in the number of model pa-
rameters (for example, the shear wave speed model from S is virtually identical to that of SB),
discussion will be focused on models SPRD, MKRD, and SBRD. These three models, obtained from
different inversions, are compatible with one another. As an example, the density models obtained
from the three inversions SPRD, MKRD, and SBRD are compared in Figure 3.2. It illustrates the
consistency of the density models both in pattern and amplitude. In what follows, illustrations of
the seismic wave speeds, density and discontinuity models are those of SPRD, the bulk sound model
is that of SBRD, and shear and bulk modulus models are from MKRD, unless noted otherwise.

Volumetric Models

Figure 3.3 shows map views of even degree shear wave speed models from inversion and SKS12WM13,
and compressional wave speed models from SPRD and P16B30. Recall that the models obtained from
these inversions are not readily comparable to existing mantle models because they consist only of the
even degrees 2, 4, and 6. For example, the ocean-continent distribution observed in all tomographic
models near the surface is difficult to see with only even degrees. The models from SPRD and
starting models agree well in the upper mantle with slight differences in the mid-mantle depths
(Figure 3.4a). As noted in Figure 3.1a, some splitting data are particularly sensitive to structure in
this depth range. In addition, the correlation of the compressional wave models decreases slightly
near the core-mantle boundary, even though the correlation of the shear wave models increases
towards the core-mantle boundary. The power, or root-mean-square (RMS) amplitude, of the models
is very similar throughout the mantle, except in the transition zone (Figure 3.4b,c). Note that the
RMS amplitude is about half of that shown for a typical model, such as S12WM13 (Su et al., 1994),
because only the even degree part of the models is considered.

The correlation between the two seismic wave models of SPRD is high in the upper mantle
and around 2500 km depth, but a poorer correlation characterises the middle mantle (Figure 3.5a).
Towards the core-mantle boundary, the correlation also drops, something that has been noted in
other studies (e.g., Robertson &Woodhouse, 1995; Bolton, 1996; Masters et al., 2000c). Both models
have high amplitudes in the upper mantle, and relatively small amplitudes in the mid-mantle region
(Figure 3.5b). The shear wave model increases in amplitude near the core-mantle boundary, whereas
the RMS amplitude of the compressional wave model is practically constant throughout the lower
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Figure 3.2: Density Models from Different Model Parametrisations
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(a) Correlation between density models of SPRD, SBRD, and MKRD. The purple curve is the
correlation between SPRD and SBRD, the yellow curve is the correlation between SPRD and MKRD,
and the green curve is the correlation between SBRD and MKRD.
(b) RMS amplitude of the density part of SPRD (green), SBRD (yellow), and MKRD (purple) as a
function of depth.

mantle.

The most striking feature of the bulk sound speed model is its anti-correlation with shear wave
in the lower-most mantle (Figure 3.6). This strong anti-correlation is consistent with models from
other studies constrained by shear and compressional wave travel time and waveform data (Su &
Dziewoński, 1997; Masters et al., 2000c). In general, the correlation between shear and bulk sound
speed models is poor, with significant negative values near the core-mantle boundary (Figure 3.7a).
Compared to the shear wave model, the RMS amplitude of bulk sound speed is smaller near the
surface and the core-mantle boundary, but similar in the mid-mantle range (Figure 3.7b).

The shear and bulk modulus models shown in Figure 3.6 are also significantly anti-correlated near
the core-mantle boundary (Figure 3.7c). Note that the amplitude of the heterogeneity is much larger
for the shear modulus model than for the shear wave model (Figure 3.7d). This is an expected result
since perturbation in shear modulus δµ/µ is related to the shear wave speed perturbation δυS/υS
as δµ/µ = 2δυS/υS + δρ/ρ. Because lateral variations in density are small, the correlations between
δµ/µ and δυS/υS and between δκ/κ and δυφ/υφ are generally high. However, correlations drop near
the core-mantle boundary, suggesting that the density model in the lower-most mantle has different
characteristics with larger amplitude.

The laterally heterogeneous whole mantle density model resembles little of either of the two
seismic wave models (Figure 3.8a). In fact, the correlation between density and seismic speeds
approaches zero as the depth increases towards the core-mantle boundary (Figure 3.8b). Another
interesting feature of the density model in mid-mantle range is that there is strong power in degree 4,
even though high degree coefficients are discouraged to be large by the smoothness constraints.
Near the core-mantle boundary, dense regions roughly correspond to the locations of slow shear
wave anomalies, which are traditionally interpreted as mantle upwellings. In contrast, density is
reasonably well correlated with the bulk sound anomalies. The amplitude of density heterogeneity
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Figure 3.3: Shear and Compressional Wave Speed Models
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(a) Relative perturbations in shear wave speed models, SPRD (left) and SKS12WM13 (right), at six
discrete depths throughout the mantle (using even degree coefficients up to and including degree 6).
Blue colours indicate regions of higher than average speeds and red colours indicate slower than
average regions. For each depth, the scale for the maps is indicated between the two models.
(b) Same as in (a) except that the compressional wave speed models of SPRD (left) and P16B30
(right) are plotted.

33



Figure 3.4: Correlation and Power of the Seismic Wave Models
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(a) Correlation between the even degree coefficients of the shear wave model of SPRD and
SKS12WM13 (red) and the compressional wave model of SPRD and P16B30 (blue) as a func-
tion of depth. The 95 % significance level for this number of parameters is 0.32.
(b) Root-mean-square (RMS) amplitude of the shear wave part of SPRD (red) and SKS12WM13
(pink).
(c) RMS amplitudes of the compressional wave part of SPRD (blue) and P16B30 (pale blue).

Figure 3.5: Comparison of the Seismic Wave Models
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(a) Correlation between the even degree part of the shear and compressional parts of SPRD.
(b) RMS amplitudes for shear (red) and compressional (blue) wave models.
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Figure 3.6: Bulk Sound Speed, Shear Modulus, and Bulk Modulus Models
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Relative perturbations in bulk sound speed (left), shear modulus (centre), and bulk modulus (right)
at six discrete depths. Blue colors indicate regions of higher than average values and red colors
indicate lower than average regions. The scale of the maps is indicated at each depth for each
model.
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Figure 3.7: Comparison of the Shear Wave and Bulk Sound Speeds, and Elastic Moduli
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(a) Correlation between the shear and bulk sound speed models from SBRD (brown) and the body
wave inversion by Su & Dziewoński (1997) (grey). This correlation plot is calculated using only the
even degree coefficients.
(b) RMS amplitudes of shear wave speed (red) and bulk sound speed (light blue) using even degrees
up to and including degree 6. (c) Correlation between the shear and bulk moduli.
(d) RMS amplitudes of the shear modulus (dark red) and bulk modulus (dark blue) parts of SBRD.
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Figure 3.8: Density Model
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(a) Relative perturbations in density at six discrete depths. Blue regions denote higher than average
density and red regions denote lower than average density. The scale of the maps is indicated at
each depth. (b) Correlation between the density and shear wave speed (dark red), compressional
wave speed (dark blue), and bulk sound speed (dark green) models.
(c) RMS amplitude of shear wave speed (red), compressional wave speed (blue) and density (green)
heterogeneity.
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Figure 3.9: Models of Topography on Boundaries

± 1.0 km ± 8.0 km ± 5.0 km

Undulations of the dynamic free surface (left), the 660-km discontinuity (centre), and the core-
mantle boundary (right). These maps are plotted using only the even degree coefficients. The scale
for the map is indicated beside the model. Blue colours indicate areas of depression and red colours
indicate areas of elevation.

is relatively small near the surface and the core-mantle boundary but is compatible to the seismic
wave models in the mid-mantle region.

Topographic Models

The models of boundary topography are poorly resolved in inversions, and of the three topographic
models the free surface is the least constrained. There is a wide range of acceptable topography on
various boundaried with very minor amplitude changes to the density model, and little change in
the fit to the free air gravity data.

The surface topography plotted in Figure 3.9 is not related to the continent-ridge distribution
as in Forte & Woodward model (1997). This boundary is the least constrained of all the models.
Although constraints on the 660-km discontinuity are better, the sensitivity to this discontinuity
is still poor, and the strong damping forces the model to be close to that of the starting model
(Figure 3.9). The topographic model of the core-mantle boundary (Figure 3.9) is the best constrained
of all the boundaries. Interestingly, even though various models of the core-mantle boundary are
dominated by power in degree 2, the model from SPRD has the most power in degree 2 order 1,
whereas models by Morelli & Dziewoński (1987) and Forte et al. (1995b) have leading power in the
second order.

3.2.2 Robustness of the Models

In any non-unique inverse problem, one of the main questions is the reliability of the models. Before
interpreting the models, one must identify which parts of the model reflect the true Earth and which
parts are artificial. In this section, resolution and the degree of uniqueness of the SPRD inversion are
discussed. First, the effects of damping and truncation of radial basis functions are assessed by two
different tests. Second, the effects due to a priori conditions, such as the data set and starting model,
are addressed. The focus will be on the density model, because there are no previous seismically
constrained density models to compare results with.

An indication of model robustness can also be obtained by calculating the trace of appropriate
part of the resolution matrix, corresponding to the number of resolved parameters. This number for
the density model is consistently greater than that of the two wave speed models, regardless of the
relative weighting of the gravity data (including mode only inversion).

Resolution Tests

Applying damping to an inverse problem generally reduces the amplitude and smoothes the model.
The significance of these effects may be visualised in terms of checkerboard and Backus-Gilbert
resolution tests. The checkerboard test investigates how a given model is affected by the inversion
process, i.e., smoothed, reduced in amplitude, and contaminated by other models. In contrast, a
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Backus-Gilbert resolution test asks how an inverted model is related to the “true” Earth structure
(Backus & Gilbert, 1968). These two tests are complementary, and provide an insight into the
resolution of various model parameters.

Checkerboard Resolution Tests

To investigate how a given model is influenced by the inversion process, synthetic data are
calculated using a given trial model, and are inverted using the same damping as in the real inversion.
The comparison of input and output models would then illustrate how the inversion alters the models.
In the ideal case, the resulting model is identical to the trial model. Two types of checkerboard tests
are performed. The first involves an input model which consists of only one non-zero value for a
specific radial order k, angular degree s, and angular order t. This is equivalent to studying the
response of the inversion to a δ-function perturbation in the wavenumber domain. The second type of
test involves an input model which is a δ-function in a mixed domain: a model with specific angular
degree s and order t peaked at a given depth. This type of test examines the radial smearing due
to damping.

In Figure 3.10, checkerboard resolution tests are plotted for different input models for the
wavenumber case. The most visible result is the reduced amplitude of the recovered models, but
leakage of power to other s, t, and k is small. These tests also show that the density model is con-
sistently well recovered, and that it is not a result of contamination from the seismic wave structure
as advocated by Kuo & Romanowicz (2002). The shear wave speed is also well resolved, but the
recovery of the compressional wave model is relatively poor. The effects of strong damping on higher
degree structure manifest itself in terms of a poorer resolution. These tests are also performed with
an input in boundary topography to assess the trade off between topographic and volumetric models
(Figure 3.11). As discussed earlier, the recovery of topographic models is poor, and some signal is
transferred into volumetric models, particularly to density, at depths near the discontinuity. How-
ever, the amplitude of heterogeneity introduced by this leakage is much smaller than the amplitude
of density model of SPRD.

The radial smearing due to inversion is illustrated in Figure 3.12, where input radial peaks are
located in upper, middle, and lower mantle. Note that the truncation of radial basis functions does
not allow for a δ-function input and that there is ringing in the input model. Recovered models have
smaller amplitude as observed previously, and have structures that are more broadly distributed in
radius compared to the input model due to radial smoothness damping. The density model is well
resolved near the core-mantle boundary, therefore the peculiar behaviour of density at the lower-most
mantle is a reliable result of the inversion.

Backus-Gilbert Resolution Test

To understand which part of the “true” Earth structure is mapped into a given portion of the
inverted model, let m(r′) be the model obtained from an inversion at a given position r′, and let
mtrue(r) be the “true” Earth model. Then the Backus-Gilbert resolution kernel is an averaging
kernel A(r′, r) relating the inverted and “true” Earth models (Backus & Gilbert, 1968):

m(r′) =

∫

A(r′, r)mtrue(r)d3r . (3.1)

In the ideal case where m(r′) = mtrue(r′), the Backus-Gilbert resolution kernel is a Dirac-delta
function, A(r′, r) = δ(r− r′).

The basis functions Bi(r) have orthogonality of the form
∫

w(r)B∗
i (r)Bj(r)d

3r = δij ,

where an asterisk denotes complex conjugation and w(r) is a weighting function. Expandingmtrue(r)
in basis functions, and using the orthogonality relation,

mtrue
j =

∫

mtrue(r)w(r)B∗
j (r)d

3r. (3.2)
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Figure 3.10: Resolution Tests: Wavenumber Input
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Resolution of shear wave speed (S), compressional wave speed (P), and density (R) with an input
at a given spherical degree (s), order (t) and radial order (k).
(a) The input model consists only of shear wave heterogeneity.
(b) The input model consisting only of compressional wave heterogeneity.
(c) The input model consisting only of density heterogeneity.
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Figure 3.11: Resolution Tests: the 660-km Discontinuity and the Core-Mantle Boundary
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Resolution of shear wave speed (S), compressional wave speed (P), density (R), topography on the
660-km discontinuity (660), and the core-mantle boundary (CMB). Map views of the input and
output models are shown on the left, and cross sections of the output volumetric models are shown
on the right with the 660-km discontinuity indicated by the yellow circle.
(a) Input model is topography on the 660-km discontinuity with a spike at spherical degree 2 and
order 1. Map view of the volumetric models are plotted at 660-km depth.
(b) Input model is topography on the core-mantle boundary with a spike at spherical harmonic
degree 2 and order 1. Map views of the volumetric models are plotted at 2850-km depth.

Similarly, the output model m(r) is expanded with basis functions

m(r) =
∑

i

miBi(r).

The coefficients mi are related to the model coefficients mtrue
j through the resolution matrix, mi =

∑

j Rijm
true
j . Substituting this expression for mi,

m(r) =
∑

i,j

Bi(r)Rijm
true
j .

Combining this expression with equation (3.2),

m(r′) =

∫

∑

i,j

w(r)Bi(r
′)RijB

∗
j (r)m

true(r)d3r.

Upon comparing the last equation with equation (3.1) the Backus-Gilbert resolution kernel is given
in terms of the resolution matrix and the basis functions by

A(r′, r) =
∑

i,j

w(r)Bi(r
′)RijB

∗
j (r).

Generally, Backus-Gilbert resolution tests are used to determine the averaging in the radial direction.
Therefore, they are calculated for specific values of the angular degree s and order t, and the result
is plotted as a function of depth.

The Backus-Gilbert resolution kernels are obtained for three depths and at different angular
degrees (Figure 3.13). The plots show that structure of models obtained from inversions is originating
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Figure 3.12: Resolution Tests: Radial Peak Input
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Resolution of shear (S) and compressional (P) wave speeds, density (R), topography on the free
surface (FS), the 660-km discontinuity (660), and the core-mantle boundary (CMB). Map views of
the models are plotted at the peak depth (left) with cross sections of the volumetric models (right).
(a) Radial input with a peak at 200-km depth and lateral input at degree 4 and order 2.
(b) Radial input with a peak at 1300-km depth and lateral input at degree 6 and order 5.
(c) Radial input with a peak at 2700-km depth and lateral input at degree 2 and order 1.
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from averaging the true structure broadly over radius. In addition, they show that contributions from
other volumetric models are small. Because of degree dependent damping, the averaging range and
effects of other models increase as the angular degree increases. However, the dominant degree 2
signal near the core-mantle boundary is robust and results from relatively narrow averaging and
minimal model mixing.

Influence of the a priori Conditions and Other Factors

The pattern of density heterogeneity obtained from the mode data alone is stable, but has a range
of amplitudes that satisfy the data equally well. Inclusion of the free air gravity anomaly narrows
the amplitude range of the density heterogeneity and slightly modifies its pattern in the mid-mantle
depths. This has been noted by Forte et al. (1994) when geopotential coefficients were combined
with shear wave data to constrain a shear wave model. Because gravity data depend on density and
boundary topography in a highly non-unique manner, the addition of gravity data also introduces
a trade off between these models. Correspondingly, the inversion is damped to allow for minimal
changes to the density and topography models from those obtained from mode only inversion.
Influence of boundary topography on density model is investigated in Figure 3.14(a). For this
experiment, the free air gravity constraint must be removed from the database, since gravity cannot
be modelled without boundary topography. Therefore, two inversions, SPR and SPRD’ with only
normal mode data are performed. The prime on SPRD’ indicates that the models of density and
boundary topography are obtained without constraints from the free air gravity anomaly. There
is a trade off between density and boundary topography as observed in checkerboard resolution
tests, but this does not significantly influence the pattern of density heterogeneity (Figure 3.14a).
Introduction of topography, however, does reduce the amplitude of the density model near the
boundary (Figure 3.14b). Topography could exist on a mid-mantle boundary (e.g., Kawakatsu &
Niu, 1994; Wen & Anderson, 1997) or on discontinuities within D” (e.g., Lay et al., 1998). Because
most modes have negligible sensitivity to undulations on internal discontinuities, these additional
boundaries are unlikely to alter volumetric models significantly. They are, however, important when
calculating the gravity anomaly, but this mainly alters the amplitude of the density model and not
its pattern.

Resovsky & Ritzwoller (1999b) argue that a priori starting models have significant impact on
the resulting density model. To address this concern, the scaling value for the shear wave to density
conversion, νρ, is varied to produce different starting models for density, including zero model. The
density models are consistent with one another and show patterns similar to those in Figure 3.8(a)
(Figure 3.14c). The density model is also relatively insensitive to the compressional wave starting
model. As indicated by the lower correlation, the compressional wave speed model is more dependent
upon the starting model than the density model. The density model can be influenced by the
parametrisation of the inversion such as SPRD or MKRD. However, models obtained from three
inversions with different parametrisations are highly compatible with one another (Figure 3.2),
indicating that the dependence of density on parametrisation is also limited.

Inversions with various levels of random noise added to the splitting function coefficients are
performed to investigate the effects of data quality (Figure 3.15a). The density model is most
affected by the addition of random noise, because its amplitude is generally smaller than the seismic
wave models. If the data set is of insufficient quality to determine independent lateral variations in
density, as suggested by Masters et al. (2000b), models will be affected significantly by the addition
of noise. However, the resulting models are highly consistent with the original model, indicating that
the data quantity and quality are sufficient to constrain density heterogeneity, even with substantial
uncertainties in the splitting functions.

Although splitting coefficients are relatively consistent between various groups (Figures 2.3 and
2.4), inversions are performed with a data set in which the measurements and their associated error
estimates are averaged. The models obtained from this data set are virtually identical to those
based upon the data set with multiple observations. To further demonstrate the independence of
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Figure 3.13: Backus-Gilbert Resolution Kernels
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(a) Backus-Gilbert resolution kernels for structure at 200-km depth with s = 4 and t = 3 for shear
wave speed (left), compressional wave speed (centre), and density (right). The red curve represents
the shear wave speed, the blue curve represents the compressional wave speed, and the green curve
represents density. The yellow line is the zero line.
(b) Same as in (a) but with structure at 1300-km depth with s = 6 and t = 5.
(c) Same as in (a) but with structure at 2800-km depth with s = 2 and t = 1.
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Figure 3.14: Comparison of Density Models with Different a priori Conditions

D
ep

th
 (

km
)

3000

2000

1000

0

0.6 0.8 1.0
Correlation

ca
0.8 0.9 1.0

Correlation

b
0.0 0.5 1.0

RMS Amplitude (%)

(a) Correlation between the density models of SPR and SPRD’.
(b) RMS amplitude of the density parts of SPR (pale green) and SPRD’ (dark green).
(c) Correlation between the compressional wave or density model of SPRD (with starting models
P16B30 and scaled SKS12WM13) and those obtained from an inversion with zero starting mod-
els. The green curve is the correlation between the two density models and the blue curve is the
correlation between the two compressional wave models.

the density model, the data set is divided into two subsets. The first subset consists of data from
Resovsky & Ritzwoller (1998) only, and the second consists of data from He & Tromp (1996). Strictly
speaking, each subset is not large enough to do an SPRD inversion, nevertheless, this experiment
demonstrates the robustness of the density model. Even though changes due to fewer number of data
are unavoidable, models are similar to the density model from the complete data set (Figure 3.15b),
and near the core-mantle boundary, the dense anomalies underneath the central Pacific and Africa
appear in each case.

To address the issue of anisotropy, the change in fit of individual modes is monitored as the
number of degrees of freedom is increased (Figure 3.1). The fit to the toroidal modes, which are
not sensitive to compressional wave heterogeneity, is improved when this model is introduced. To
investigate the possibility of mapping anisotropic shear wave structure into the compressional wave
model, an inversion with only spheroidal modes is performed. The resulting models are highly con-
sistent with models obtained based upon the entire data set (Figure 3.15c), suggesting that isotropic
heterogeneity is modelled, rather than aliasing shear wave anisotropic signal into compressional wave
model. However, anisotropy is not fully explored in this study.

3.2.3 Depth Dependent Scaling Relationship

One of the applications of the laterally varying models of the mantle is to compare with mineral
physics predictions. A common practice is to compare seismically obtained scaling values relating
two models, such as shear wave speed and density, with values determined by theoretical calculations
or experiments. The depth dependent scaling relationship between shear wave and density, νρ(r),
is particularly important, because it is used in mantle flow calculations, such as modelling of the
gravity field and constraining the radial viscosity profile.
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Figure 3.15: Effects of Random Noise and the Choice of Data
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(a) Comparison between the density model of SPRD and density obtained from data to which
10% (black curve), 20% (red curve), and 30% (blue curve) random noise is added. Note that the
correlation ranges from 0.5 to 1.0 on the x-axis instead of from −1.0 to 1.0. Only the density models
are compared because they are affected most by the addition of random noise.
(b) Density models at 2850 km depth based upon SPRD (top), modes reported by Resovsky &
Ritzwoller (1998; middle), and modes reported by He & Tromp (1996; bottom). Blue regions denote
higher than average density and red regions denote lower than average density. The scale of the
maps is indicated on the bottom right corner.
(c) Correlation of shear (red) or compressional (blue) wave models obtained from full data set and
from data set with only the spheroidal modes.
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Mineral physicists determine depth dependent relationships between various model parameters,
such as seismic wave speeds, by assuming that variations are due to temperature. For example,

νβ =

(

δ ln υS
δ ln υP

)

P

=
υP
υS

(∂υS/∂T)P
(∂υP /∂T)P

or νρ =

(

δ ln ρ

δ ln υS

)

P

=
υS
ρ

(∂ρ/∂T)P
(∂υS/∂T)P

,

where T denotes temperature, and the derivatives are determined at constant pressure P . The tem-
perature derivatives can be determined by laboratory experiments, and measurements on mantle
minerals provide the value between 1.0 and 1.6 for νβ (e.g., Anderson & Suzuki, 1983; Isaak et
al., 1989; Anderson et al., 1991; Isaak, 1992; Anderson & Isaak, 1995). Values greater than 1.6
are not observed by laboratory studies. Alternatively, mineral properties can be considered theo-
retically. Determination of νβ by theoretical calculations, such as lattice dynamic calculation and
thermodynamic calculations with anelasticity, provide values that are much larger than those from
experimental studies, between 1.4 and 2.5 (e.g., Agnon & Bukowinski, 1990; Reynard & Price, 1990;
Isaak et al., 1992; Karato, 1993a; Karato & Karki, 2001). The other scaling factor νρ determined
from experiments take values of 0.4 to 1.0 (e.g., Anderson et al., 1968; Isaak et al., 1989; Chopelas
& Boehler, 1989; Chopelas, 1992). However, it is significantly reduced to values between 0.2 and 0.4
by theoretical evaluations (e.g., Anderson, 1987; Karato, 1993a). The formulation with temperature
derivatives neglects variations due to other factors, such as composition, a phase change, or partial
melting. The validity of purely thermal source of lateral variations is debatable, especially when the
correlation between two models is low, and this may be the cause of discrepancies between mineral
physics and seismic estimates.

Early studies on the relationship between shear and compressional wave variations focused on
the arrival times of the two waves. The ratio νβ in the upper mantle is constrained by comparison
of P and S arrivals, giving values which ranged from 1.3 to 2.7 (e.g., Doyle & Hales, 1967; Jeffreys
& Singh, 1973; Romanowicz & Cara, 1980; Wickens & Buchbinder, 1980; Souriau & Woodhouse,
1985; Bokelmann & Silver, 1993). The ratio in the lower mantle is obtained using differential travel
times PcP−P and ScS−S to give 1.7 ≤ νβ ≤ 2.5 (e.g., Hales & Roberts, 1970; Jordan & Lynn, 1974;
Lay, 1983; Pulver & Masters, 1990). Normal mode data have also been used to constrain νβ mostly
for the lower mantle, and the value ranges between 1.7 and 2.5 (e.g., Giardini et al., 1987, 1988; Li
et al., 1991b). With arrival of tomographic models, νβ are calculated from shear and compressional
wave models. One can use the ratio of the RMS amplitudes of the two seismic wave models, which
gives values between 1.0 and 3.0 (e.g., Dziewoński & Woodhouse, 1987; Ritzwoller & Lavely, 1995;
Vasco et al., 1994; Robertson & Woodhouse, 1995; Kennett et al., 1998; Masters et al., 2000c).
Alternatively, νβ can be included as one of the model parameters and jointly inverted with either
shear or compressional wave model (e.g., Bolton, 1996; Robertson & Woodhouse, 1996). The range
of values obtained in this case is similar to that from the comparison of the RMS amplitudes. These
methods rely on a perfect correlation between shear and compressional wave heterogeneity, which
has been shown to be questionable, especially in the lower mantle (e.g., Robertson & Woodhouse,
1995; Bolton, 1996; Figure 3.5a).

The second factor νρ can be obtained from geodynamic studies. These studies require density
distribution within the mantle, and derive such a model by converting seismic wave models using
the factor νρ. Investigations to explain data such as gravity anomalies and glacial rebound lead to
νρ between 0.0 and 0.4 (e.g., Corrieu et al., 1994; Forte et al., 1994; Forte & Mitrovica, 2001).

In this study, models obtained from inversion are analysed to derive depth dependent νβ and νρ.
Rather than determining scaling factors based upon RMS ratios, least squares fit of a straight line
with slope ν to coefficients with uncertainties is applied (York, 1969). At a given depth, a constant
value, ν, is sought for, which best relates model X to model Y by minimising the objective function

f(ν) =
∑

i

(yi − νxi)
2

(∆y)2i + ν2(∆x)2i
. (3.3)

The summation, i, is over all coefficients, and xi and yi are the coefficients of models X and Y
with their associated uncertainties (∆x)i and (∆y)i, respectively. The derivation of equation (3.3)
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Figure 3.16: Depth Dependent Scaling Relationships
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(a) Proportionality between the shear and compressional wave speed models νP . The red curve is
the estimate based upon the SPRD inversion. The yellow curve represents the model from Robertson
& Woodhouse (1996), the pale green curve is from Bolton (1996), and the light blue curve is from
Karato (1993a). The former two curves are determined by inverting shear and compressional wave
data for shear or compressional heterogeneity and a depth dependent scaling factor, assuming a
perfect correlation between the two wave speed models. Karato’s profile is based upon mineral
physics estimates.
(b) Proportionality between density and shear wave speed νρ. The green curve is obtained from the
shear wave and density parts of SPRD, the light blue curve is from Karato (1993a) and the yellow
curve is from Forte et al. (1994).

is discussed in Taylor (1997). The uncertainties assigned to each coefficient in this analysis are not
taken from the diagonal elements of the covariance matrix. As discussed in Chapter 2, in a damped
inversion, the elements of the covariance matrix do not represent realistic error estimates. In this
analysis, error estimates based upon data abundance is employed, i.e., the uncertainty is prescribed
to be inversely proportional to the square root of the number of observations at a given degree and
order.

In Figure 3.16a, the depth dependent scaling parameter νβ obtained through the regression
analysis is shown together with seismic estimates from Bolton (1996) and Robertson & Woodhouse
(1996), as well as an estimate from mineral physics (Karato, 1993a). Seismically obtained values for
the scaling between shear and compressional waves are highly consistent with one another. However,
the result from SPRD and the profile determined by Bolton differ in the upper mantle, even though
the correlation between the two seismic wave speed models is relatively high (Figure 3.5a). Other
seismic studies, using data such as station corrections, indicate an upper mantle value of around 2
(e.g., Souriau & Woodhouse, 1985), which is in good agreement with the result using SPRD. The
high value near the surface is usually attributed to the presence of large-scale partial melting. In the
lower mantle, seismically determined values are larger than estimates based upon mineral physics.
Subsequently, various mechanisms, such as large scale partial melting (Agnon & Bukowinski, 1990;
Isaak et al., 1992), compositional heterogeneity (Jeanloz & Knittle, 1989; Jackson, 1998), and a
phase change (Yeganeh-Haeri et al., 1989), have been invoked to explain the discrepancy.
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Figure 3.17: Correlation and Scaling Relation
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Data from hypothetical models are shown to illustrate the effects of correlation and the validity of
scaling assumption.

When two models are perfectly correlated, the problem of finding the slope is well-defined,
because the coefficients lie on a straight line. However, when the two models are poorly correlated,
the coefficients xi and yi are randomly distributed and the best fitting slope is either zero or infinity.
As the correlation between two models decreases, the assumption that the two models can be related
by a single parameter breaks down (Figure 3.17). Examples of this are the unreasonably large values
around 1300 km and beneath 2500 km depth where the correlation between the two seismic speed
models is low (Figure 3.5a). The particularly large values near the core-mantle boundary are due
to the compounded effects of a poor correlation and an increasing RMS amplitude ratio. Here, at
the thermal boundary layer, another unknown is the effect of anisotropy, the existence of which has
been suggested (e.g., Lay et al., 1998).

In Figure 3.16b, the factor νρ based upon the density and shear wave models are compared to
those of Karato (1993a) and Forte et al. (1994). The profile by Karato is calculated using thermal
derivatives based upon an experimentally determined activation energy and considering the effects
of attenuation. On the other hand, the profile by Forte and others has been obtained through
an inversion of geopotential and seismic observations. The profiles are in reasonable agreement in
the mid-mantle depths where the correlation between density and shear wave speed variations is
relatively high. Differences between the profiles occur around the transition zone and in the lower-
most mantle, and the scaling values obtained in these regions are often negative. The profile of νρ
plus-or-minus one error bar defines a range that includes both Karato’s and Forte’s models almost
throughout the mantle. However, considering the low correlation between density and shear wave
speed, it is questionable to use the assumption that a scaled wave speed model characterises the
density structure of the mantle.

3.3 Data Set 2: Mantle and Inner Core Sensitive Normal

Mode

Thus far, modelling of density variations within the mantle has relied upon mantle sensitive modes
(Ishii & Tromp, 1999; Masters et al., 2000b; Kuo & Romanowicz, 2002). Despite their sensitivity
to mantle structure, inner core sensitive modes have been ignored in studies of the mantle, because
these data exhibit a strong inner core signature. To overcome this dilemma, mantle and inner core
sensitive modes are simultaneously inverted for mantle heterogeneity and inner core anisotropy in
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Table 3.3: Mode and Travel Time Inversions

Model χ2 χ2
7 VR(modes) VR(IC) VR(DF) VR(BC) VR(AB)

S 3.3 3.4 90 77 84 71 75
SP 3.0 3.0 91 80 83 72 75
SPR 2.7 2.7 92 83 84 71 74

Table summarising the fit for different number of model parameters within the mantle. Inner core
anisotropy is assumed to be uniform. A χ2 test for the overall fit is given by χ2 = χ2/(N − M)
and χ2

7 = χ2/(N −M7), where N denotes the number of data, and M and M7 are the number of
model parameters with kmax = 13 and 7, respectively. VR(modes) is the variance reduction of the
entire normal mode data set, and VR(IC) is the fit to inner core sensitive modes. VR(DF) is the
variance reduction for PKPDF data, VR(BC) is the variance reduction for PKPBC−PKPDF data,
and VR(AB) is the variance reduction for PKPAB−PKPDF data.

this section. The results for the inner core are discussed in the next Chapter.
In this analysis, only a seismic parametrisation is considered. The same labelling scheme for

different model vector set up is used as in the previous section. However, topography, because the
data set does not include gravity anomaly, is never included in modelling. The starting models are
as discussed in the previous Chapter except that a zero starting model is used for density model.
Because inner core modes are strongly sensitive to the compressional wave structure in the mantle,
this model is damped twice as hard as shear wave or density model. This is required to avoid
putting inner core signal into the mantle. Finally, this section uses Chebyshev polynomials as the
basis function, but inversions are also performed with cubic b-splines and layers to investigate the
dependence of the density model on the radial basis function.

3.3.1 Results

Statistical results of inversions with different number of parameters within the mantle are presented
in Table 3.3. An increase in parameters from an S to SPR inversion is supported by a systematic
decrease in χ2/(N −M). In the previous section, this decrease in χ2/(N −M) is obtained when the
maximum radial parametrisation (kmax) is 7, but the improved modal database supports a decrease
in χ2/(N −M) even when kmax = 13. The fit to the body wave data does not change more than a
couple of percent, suggesting that additional parameters in the mantle do not trade off significantly
with inner core anisotropy. On the other hand, the fit to inner core sensitive modes improves with
an increased number of mantle parameters, confirming that mantle structure makes a substantial
contribution to the splitting coefficients of these modes.

In general, the models obtained in this section are similar to those of SPRD, with average corre-
lation coefficients of 0.9, 0.8, and 0.7 for shear wave, compressional wave, and density, respectively,
between SPR of this section and SPRD from the previous section. To test the characteristic be-
haviour of bulk sound speed in the lowermost mantle, this model is obtained using the two seismic
wave speed models and the reference model PREM. The strong anti-correlation of bulk sound and
shear wave speeds still exists at the base of the mantle, even when the model of bulk sound speed is
not directly from the inversion. Furthermore, the regional anti-correlation of shear wave and den-
sity underneath the central Pacific and Africa at these depths remains one of the best constrained
features.

The density models from SPR of this section and SPRD are compared in Figure 3.18(a). The
models are similar throughout the mantle as the high correlation coefficient of 0.7 indicates. In the
previous study based only upon mantle sensitive modes, the amplitude of the density anomaly was
difficult to constrain without the gravity data. Here, gravity data are not included, yet the amplitude
of the density model is comparable to or smaller than that of the compressional wave model. In
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Figure 3.18: Density Models from the Two Different Mode Data Sets
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(a) Comparison of density models based upon mantle and inner core sensitive modes (left) and
SPRD which is constrained only by mantle sensitive modes and gravity data (right). Blue indicates
regions where the relative perturbation is higher than average and red indicates values that are lower
than average. The scale is fixed at a saturation level of ±1%.
(b) Comparison of the RMS amplitude of the density models from SPRD (light green), and SPR of
this section (green).

particular, unlike the density model of SPRD, the new model has smaller RMS amplitude near the
surface and the core-mantle boundary (Figure 3.18b). Small RMS amplitude near the surface is
expected from the tectosphere hypothesis, i.e., the density increase due to temperature of the cold
cratons is cancelled by chemical effects (e.g., Jordan, 1978; Forte et al., 1995a). It is perceivable that
similar cancellation occurs near the core-mantle boundary. As a consequence of low RMS amplitude
near the boundaries, the RMS profile as a function of depth contains two peaks: one within the
transition zone and another at around 2300 km depth. These characteristics are independent of the
radial basis functions used in the inversion.

The choice of Chebyshev polynomials as the radial basis function is somewhat arbitrary, although
their gradual variation is consistent with the smoothly varying sensitivity kernels. The disadvantage
of global basis functions, such as Chebyshev polynomials, is that the termination of polynomials at
some order (in this case, kmax = 13) can lead to structure due to “ringing” near the end points (i.e.,
near the surface and the core-mantle boundary). In what follows, density models are determined
using two local basis functions: layers and cubic b-splines (de Boor, 1978; Lancaster & Salkauskas,
1990). In these inversions, the number of unknowns in the radial direction is kept constant (i.e.,
kmax = 13) and both layers and b-spline knots are spaced evenly throughout the mantle. Damping
parameters in the radial direction are chosen so that the traces of the resolution matrices (i.e., the
number of resolved model parameters) are similar, while keeping damping in the lateral directions the
same. The fits to data with local basis functions are then similar to that obtained with Chebyshev
polynomials. In general, the observed patterns in the density distribution are compatible between
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Figure 3.19: Density Models based upon Various Radial Basis Functions
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(a) Density models using layers (left), Chebyshev polynomials (center), and cubic B-splines (right)
at six discrete depths. Blue indicates regions where the relative perturbation is higher than average
and red indicates values that are lower than average. The scale is fixed at a saturation level of
±0.5% for all maps.
(b) Plot of the RMS amplitudes of density models based upon Chebyshev polynomials (green), cubic
B-splines (yellow), and layers (brown) as radial basis functions.

models with different radial bases, including features near the core-mantle boundary (Figure 3.19a).
The models are least correlated near the surface and the core-mantle boundary, as expected, but
the correlation coefficients remain well above the 95% significance level. Furthermore, the radial
amplitude profiles of these models are relatively consistent with one another (Figure 3.19b). The
two peaks in RMS amplitude in the transition zone and around 2300 km depth are present regardless
of the choice of basis function or damping scheme, implying that they are robust features and not
the results of “ringing”.

3.3.2 Robustness of the Models

In the previous section, the question of resolution was investigated in terms of checkerboard and
Backus-Gilbert resolution tests, but the resolution of models is most conveniently addressed by
looking at the resolution matrix. In Figure 3.20, components of the resolution matrix are shown.
Because neither the sensitivity kernels nor the applied damping depend upon angular order t, the
resolution for different values of t within the same angular degree is nearly identical. The effect of
stronger damping for higher order Chebyshev polynomials is evident, as diagonal elements of the
resolution matrix become nearly zero when k is large. In addition, stronger damping on higher
spherical harmonic degrees and the compressional wave speed models manifest themselves as poorer
resolution of these parameters. Figure 3.20 also shows that there does not appear to be substantial
leakage from model to model (indicated by smaller off-diagonal elements in comparison to diagonal
components).
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Figure 3.20: Resolution Matrix
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Resolution matrix of the SPR inversion when Chebyshev polynomials are used as the radial basis
functions. The elements are arranged by model, shear wave speed (S Wave), compressional wave
speed (P Wave), or density (R), and in increasing Chebyshev polynomial order (left to right). Parts
of the matrix corresponding to model parameters at degree 2 order 1 (top), degree 4 order 1 (middle),
and degree 6 order 1 (bottom).
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Figure 3.21: Laterally Varying Scaling Ratios
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Map views of laterally varying ratios of νρ (left), density to compressional wave speed να (center),
and Poisson’s ratio (right). Blue indicates regions where the relative perturbation is higher than
average and red indicates values that are lower than average. Perturbations from the reference ratio
as in PREM (Dziewoński & Anderson, 1981) are shown at 0.05%, 0.02%, and 0.05% levels for the
three ratios, respectively.

3.3.3 Laterally Varying Scaling Relationship

In the previous section, it was shown that depth dependent scaling factors between two models are
not very useful when models are poorly correlated. Instead of ratios that vary only with radius,
one may calculate lateral variations in the scaling ratio to identify anomalous regions. For example,
Bolton (1996) notes that beneath the central Pacific, the ratio νβ is anomalously high in the lower-
most mantle. There is, however, a problem. The three-dimensional models represent perturbations
from the reference Earth model: there are inevitably regions where the model values are zero, re-
sulting in singularities when a ratio is calculated. To avoid these singularities, lateral variations in
the scaling ratio are determined by combining the models with the reference model to obtain the
absolute values of velocity and density.

In Figure 3.21, variations in three different ratios are exhibited. The ratios νρ and density to
compressional wave speed are generally dominated by the pattern of the seismic wave anomaly since
lateral variations in density are weaker (Figure 3.8c). Deviations from seismic speed patterns are
observed when the correlation between models is low, such as in the transition zone and near the
core-mantle boundary.

Another parameter which may be of interest is Poisson’s ratio. It describes the ratio of thinning to
elongation, or thickening to contraction, and varies between 0.1 and 0.4 for different rocks (Turcotte
& Schubert, 1982). In terms of elastic moduli, Poisson’s ratio νσ is given by νσ = (3κ−2µ)/(6κ+2µ).
This ratio can also be written in terms of the seismic wave speeds as νσ = [(υP /υS)

2−2]/[2(υP/υS)
2−

2], and the distribution of high and low Poisson’s ratio obtained from the two seismic models of SPR
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is illustrated in Figure 3.21. Practically, the pattern of Poisson’s ratio is opposite of νβ , hence
laterally varying model of νβ has been omitted. In general, the various ratios are dominated by the
pattern of models with stronger lateral variations. Anomalies associated with superplumes clearly
stand out in these plots.

3.4 Discussion and Implications

This Chapter presents results which demonstrates that normal mode data, with or without additional
constraints from the Earth’s gravity field, can constrain independent even degree lateral variations
in seismic wave speeds and density, or, alternatively, elastic moduli and density. The mantle models
obtained from the inversion using both mantle and inner core modes do not trade-off significantly
with inner core anisotropy, and the improved database supports inversions for seismic wave speeds
and density structure with a maximum radial expansion of order 13.

The seismic wave speed models obtained from these data are consistent with existing models
based upon body wave data, with the exception in the mid-mantle depth range. This disagreement
is mainly due to a relatively small RMS amplitude in the middle mantle. Normal modes provide
useful constraint in this region, because some modes are particularly sensitive to structure at this
depth range. The models of elastic moduli are well correlated with models of shear and bulk sound
speeds, respectively.

One of the main features of the modelling exercise is the introduction of independent density
variations. The density RMS amplitude is generally smaller than that of the velocity models, and
exhibits two peaks around 600 km and 2300 km depth. Experiments with local radial basis functions
demonstrate that the two maxima in the density RMS amplitude are robust, and that the pattern
of the density distribution does not depend on the choice of the basis or damping scheme. Contrary
to assumptions that density variations can be related to seismic speed variations by a scaling factor,
the models are not well correlated in general. The depths of RMS amplitude peaks in the density
model correspond with low correlation of density and seismic wave speed variations. Significant
de-correlation suggests that lateral heterogeneities in the mantle are not entirely due to variations
in temperature. Compositional variations in the transition zone have been suggested previously, for
example, based upon the significant de-correlation between topography on the 410-km discontinuity
and wave speed at that depth (Flanagan & Shearer, 1999). The most striking observation of the
density model appear in the lower-most mantle, where locations of high density anomalies coincide
with slow shear wave speed anomalies. Strong global anti-correlation between shear and bulk sound
speeds is also observed, further suggesting that compositional, as well as thermal, heterogeneity
exists near the core-mantle boundary. This inference is consistent with convection simulations where
dense material accumulates beneath upwellings. The lateral flow along the core-mantle boundary
collects dense material to these locations, but the material is too heavy to be entrained in the uplift
(Christensen, 1984; Davies & Gurnis, 1986; Hansen & Yuen, 1988; Tackley, 1998). Introduction of
heavy core material into the mantle beneath upwellings can also produce such density anomalies
(Knittle & Jeanloz, 1991).
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Chapter 4

Inner Core Anisotropy

4.1 Introduction

Peculiarity of the solid inner core was first reported by Masters & Gilbert (1981) when splitting of
inner core sensitive modes were found to exhibit noticeably different pattern from that of mantle
modes (Figure 2.1). This observation was soon augmented by measurements of PKIKP arrival times:
the travel times depended on the direction of ray propagation (Poupinet et al., 1983). There were
four candidates suggested as the cause of these observations. Initially, prolateness of the inner core
was offered as the possible source of the anomalous behaviour (Poupinet et al., 1983). However,
this shape is dynamically unstable, and analysis of PKiKP indicated that the inner core is elliptical
and is close to hydrostatic equilibrium (Rial & Cormier, 1980; Souriau & Souriau, 1989; Roudil &
Souriau, 1993). Distribution of heterogeneities, as observed within the mantle, was also proposed,
but modelling the inner core with isotropic variations did not provide satisfactory fit to data (Cormier
& Choy, 1986).

It was difficult to explain data by placing heterogeneities in the inner core, but putting them in the
outer core was more successful, especially for normal mode observations (Ritzwoller et al., 1986, 1988;
Widmer et al., 1992). Heterogeneities in the outer core are still championed by some seismologists,
both from normal mode and body wave perspectives (e.g., Vasco & Johnson, 1998; Romanowicz
& Bréger, 2000; Romanowicz et al., 2003), although there are seismic studies which argue against
structure in the outer core (e.g., Roudil & Souriau, 1993). Furthermore, dynamical consideration of
a vigorously convecting outer core, generating the magnetic field, predicts heterogeneities that are
much below seismically detectable level (Stevenson, 1987).

The final, and most simple, idea was that the inner core was transversely isotropic. In 1986,
fifty years after the discovery of the inner core (Lehmann, 1936), observations of both mode and
PKPDF travel times were shown to be compatible with transversely isotropic inner core (Morelli et
al., 1986; Woodhouse et al., 1986). Analysis of differential travel times confirmed this result (Shearer
& Toy, 1991; Creager, 1992), and fit to various inner core modes with anisotropy (Tromp, 1993)
convincingly demonstrated that the source of anomalous observations associated with the inner core
is indeed transverse isotropy.

Subsequent investigations produced a wide range of transverse isotropy models, some of which
are illustrated in Figure 4.1. The models depend strongly on the kind of data used in the analysis.
Those based upon normal mode observations tend to prefer stronger anisotropy near the inner core
boundary than in central inner core (e.g., Woodhouse et al., 1986; Tromp, 1993). This trend is not
consistent with inferences based upon body waves, which prefer anisotropy that is generally stronger,
especially near the centre of the Earth (e.g., Vinnik et al., 1994; Su & Dziewoński, 1995; McSweeney
et al., 1997; Ouzounis & Creager, 2001; Song & Xu, 2002), and a very weakly anisotropic (e.g.,
Shearer et al., 1988; Creager, 2000) or even isotropic (e.g., Song & Helmberger, 1995; Ouzounis &
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Figure 4.1: Various Models of Inner Core Anisotropy
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Different inner core anisotropy models are presented in terms of ǫ (solid) and σ (dashed), where
they are grouped by data used in the inversion: normal modes (left), absolute travel times (centre),
and differential travel times (right). Note that Tromp (1995a) model uses both normal mode and
absolute travel times. Colours indicate different studies, Woodhouse et al. (1986; yellow in the left
panel), Tromp (1993; black in the left panel), Su & Dziewoński (1995; green), Tromp (1995a; red),
Creager(1992; blue), Song & Helmberger (1993; black in the right panel), and McSweeney et al.
(1997; yellow in the right panel). The grey line is the zero line.

Creager, 2001; Song & Xu, 2002) layer near the inner core boundary. Romanowicz et al. (1996) have
combined differential travel time and normal mode data in their inversion for the inner core, however,
their results are strongly controlled by the differential travel times which may contain considerable
signal from regions outside the inner core. In order to derive a model that is compatible with a suite
of inner core sensitive data, analysis presented in this Chapter simultaneously fits normal mode
splitting functions, absolute and differential travel times. Taking advantage of the sensitivity of
normal mode data to the inner core as a whole, a simple global model of the inner core is sought
for. In addition, a study of body wave data are presented to test whether the data set can constrain
more complex structure in the inner core, such as hemispheric variations in anisotropy as suggested
by some differential travel time studies (e.g., Tanaka & Hamaguchi, 1997; Creager, 1999; Niu &
Wen, 2001).

4.1.1 Radial Basis Function

The choice of radial basis functions for the inner core must meet certain conditions. The bottom-
most point in the inner core corresponds to the centre of the Earth, so the radial basis function
should be continuous and smoothly varying at this point. Chebyshev and Legendre polynomials,
commonly used in mantle models, give a cusp (i.e., a discontinuity in the first derivative) at the centre
if any odd degree terms are non-zero. There are 3 other choices for popularly used basis functions
in the inner core; cubic b-splines (e.g., Tromp, 1993, 1995a; McSweeney et al., 1997), layers (e.g.,
Su & Dziewoński, 1995) and even degree polynomials in radius (e.g., Dziewoński & Anderson, 1981;
Morelli et al., 1986; Woodhouse et al., 1986). The choice of cubic b-splines is not optimal. In order
to impose a smooth variation at the centre of the Earth, all splines near the centre must have the
same value or the inner-most spline must vanish, i.e., anisotropy at the centre of the Earth must be
zero. The anisotropy at the centre can be finite. For example, if the inner core is a single crystal,
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Table 4.1: Models of Anisotropy with Different Mantle Parametrisations and Starting Models

Model α γ β ǫ σ
S 3.6 0.93 0.95 1.8 −0.80
SP 3.8 0.83 0.99 1.9 −0.74
SPR(R) 3.5 0.88 0.99 1.8 −0.66
SPR(S) 3.5 0.88 0.99 1.8 −0.66

The values of α, γ, and β in percent for constant anisotropy within the inner core are compared
with different parametrisations of the mantle as defined in the previous Chapter. “R” and “S” in
brackets indicate that the starting density model is that of SPRD (Ishii & Tromp, 2001) and scaled
SKS12WM13 (Dziewoński et al., 1997), respectively. The values of α, γ, and β are converted to ǫ
and σ assuming that the term A0/(ρυ

2
P ) in equation (2.2) is unity.

there will be non-zero anisotropy. Furthermore, this parametrisation requires a minimum of 3 splines
within the inner core even for constant anisotropy. Therefore, inner core models considered in this
Chapter use either even degree polynomials or layers as basis functions. Even degree polynomials
are preferred over layers, because the latter introduces artificial discontinuities which may lead to
erroneous interpretations.

4.1.2 Inner Core Anisotropy and Mantle Heterogeneity

There is surprisingly little variation in the values of the anisotropic parameters when the mantle
parametrisation is changed (Table 4.1). This is a consequence of the consistency of the zonal com-
ponents of compressional wave speed and density within the mantle. The low frequency inner core
modes possess substantial sensitivity to these two variations, but the amplitudes of the zonal compo-
nents for compressional wave and density of the SP or the SPR models are similar to a scaled shear
wave model throughout the mantle. Under the assumption that the symmetry axis of anisotropy is
aligned with the rotation axis, only zonal terms at degrees 2 and 4 constrain inner core anisotropy
(equation 2.11). Hence the inner core models are relatively insensitive to mantle parametrisation.
For referencing purposes, the inner core model obtained with an SPR parameterization for the mantle
is denoted as SPRI0.

4.2 Constant Anisotropy

The previous discussion already showed some results for inner core anisotropy that does not vary
with radius. In this section, the constant model is analysed in detail: changes with different weights
on various types of data, data fits, and uncertainties of the model values.

4.2.1 Models

There are four different types of data (mode, PKPDF, PKPBC−PKPDF, and PKPAB−PKPDF)
in the inversion which are not necessarily compatible with one another, and it is important to
understand the effects of relative weighting on different data subsets. Table 4.2 summarises the
results of inversions with various weighting schemes. Regardless of how the absolute travel time
data are weighted with respect to normal modes, when a good fit is achieved for PKPDF, the model
also explain the mode data. This result indicates that these two data sets are highly compatible.
In fact, this consistency is so robust that even an inner core model obtained from an inversion with
only normal mode data can fit the absolute travel times.
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Table 4.2: Inversion Results with Different Data Weighting

Variance Reduction Model Parameters
ω IC DF BC AB α γ β ǫ σ
1 83 85 71 74 3.5 0.88 0.99 1.7 -0.65
10 83 85 71 75 3.5 1.0 0.93 1.7 -0.85
100 70 79 77 78 4.2 1.1 0.58 2.1 -2.0
1000 66 35 84 84 5.5 1.3 -0.098 2.8 -4.2

10† 83 85 69 73 3.4 0.97 0.99 1.7 -0.67
100† 83 85 66 73 2.9 1.3 0.97 1.5 -0.83
1000† 82 85 67 73 2.9 1.5 0.85 1.4 -1.3

Fit to various data and models obtained from inversions with different body wave data weighting
with respect to normal mode data (ω). The variance reductions for inner core sensitive modes,
PKPDF, PKPBC−PKPDF, and PKPAB−PKPDF are denoted by IC, DF, BC, and AB, respectively.
The relative weighting of mode, PKPDF, PKPBC−PKPDF, and PKPAB−PKPDF are prescribed
to be 1:2ω:2ω:ω (values of ω without †) or 1:2ω:2:1 (ω with †). ω = 1 corresponds to SPRI0.
Both variance reduction and model values are in percent. Values of ǫ and σ have been determined
assuming that the A0/(ρυ

2
P ) term in equation (2.2) is unity.

However, satisfying differential travel time data at the same time as PKPDF or normal mode
data is more difficult. Changing the weighting on body waves improves the differential travel time
fit, but the fit to mode and absolute travel time data degrades. In general, differential data (and
PKPDF data to some extent) prefer to have higher values of α and γ and lower values of β than
those determined by normal mode data, translating to higher values of ǫ and significantly lower
values of σ. If ∼ 75% variance reduction is required for the differential data, the model values
ǫ and σ are 2.2% and −2.2%, respectively, in contrast to 1.7% and −0.65%, in SPRI0 where the
two types of differential data are fit to 70% and 74%. The models obtained with heavier weights
on body wave data are more consistent with previous models derived from differential travel time
measurements alone. For example, the model of Creager (1992) has ǫ = 3.48% and σ = −4.95%
which reduces variance in PKPBC−PKPDF data by more than 85%. Requiring an ∼ 85% fit to
differential data in the joint inversion gives results which are compatible with Creager’s estimates,
ǫ = 2.9% and σ = −4.6%. However, such requirements reduce the fit to normal mode and PKPDF

data significantly. With a ∼ 75% fit to differential data, the fits to the modes and PKPDF are 70%
and 78%, respectively. Because normal mode data constrain global anisotropy, and because there are
reasons to believe that differential travel time data are biased or contaminated (detailed arguments
are presented section 4.5 and 4.6.2), SPRI0 is chosen as the preferred model.

The fits achieved by model SPRI0 for inner core sensitive modes is 83% variance reduction
whereas when mantle models from SPRI0 and inner core model of Tromp (1995a) or Creager (1992)
is used, the variance reduction becomes 69% or 20%, respectively. Note that for the calculation
of variance reduction using the model of Creager (1992), γ was assumed to be 1.0%. The fits
to travel time data using these three models are illustrated in Figure 4.2 and Figure 4.3. The
model SPRI0 achieves 85%, 71%, and 74% variance reduction to PKPDF , PKPBC−PKPDF , and
PKPAB−PKPDF data, respectively. In comparison, the model of Tromp (1995a) gives 82%, 79%,
and 76%. This model is not constant in radius (uses 5 radial basis functions, i.e., there are 15 model
parameters), nonetheless the fits are similar to those of SPRI0 whose model vector consists only of
3 elements. In contrast, the model of Creager (1992) over-predicts PKPDF data for rays penetrating
deeply into the inner core (resulting in negative variance reduction for this data set), but fits the
large anomalies in PKPBC−PKPDF and PKPAB−PKPDF, giving variance reduction greater than
85%.
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Figure 4.2: Fit to Absolute Travel Time Data
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Plots of PKPDF data (black circles) at different distance ranges, and predictions based upon various
models. Black curve is from the constant model SPRI0, the red curve is the depth dependent model
of Tromp (1995a), and the blue curve is a constant anisotropy model of Creager (1992). The model
of Tromp (1995a) fits the PKPDF data with a variance reduction of 82%, but the strongly anisotropic
model of Creager (1992) over-predicts the data trend (variance reduction of −15%).
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Figure 4.3: Fit to Differential Travel Time Data
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Plot of averaged differential data (black circles) at different distance ranges and predictions based
upon the constant anisotropy model SPRI0 (black curve), and models of Tromp (1995a) (red curve),
and Creager (1992) (blue curve). The background yellow dots are individual measurements.
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Table 4.3: Volumetrically Averaged Inner Core Anisotropic Parameters

Source < α > < γ > < β > < ǫ > < σ >
Morelli et al. (1986) 1.92 −3.84
Woodhouse et al. (1986) 6.7 −2.7 0.70 3.49 0.781
Shearer et al. (1988) 0.971 −1.73
Shearer & Toy (1991) 0.615 −0.507
Creager (1992) 3.48 −4.95
Song & Helmberger (1993) 3.02 −5.44
Tromp (1993) 4.21 2.33 1.27 2.21 −1.99
Su & Dziewoński (ICA4A) (1995) 1.62 −2.29
Su & Dziewoński (ICA4B) (1995) 1.90 −3.03
Tromp (1995a) 3.55 1.43 0.675 1.86 −1.97
McSweeney et al. (1997) 0.823 −0.965
Durek & Romanowicz (1999)a 5.0 −0.5 0.8 2.5 −0.4
SPRI0 3.49 0.881 0.988 1.82 −0.67

Summary of selected models of the inner core. Model values have been volumetrically averaged
(denoted by < · >) and are in percent.
a The values are based upon equations (16) through (18) of Durek & Romanowicz (1999). Note that
there is a sign error in equations (16) and (17).

The values of α, γ, and β, and/or ǫ and σ obtained from various research groups based upon
different data are compared and summarised in Table 4.3. Many of the models in this table are depth
dependent, so the model values have been averaged volumetrically in order to facilitate comparison
with SPRI0. The three anisotropic parameters, α, γ, and β cannot be obtained independently in
body wave studies, so direct comparisons of these parameters can be made only with previous normal
mode studies. Using splitting function measurements for 7 modes, Woodhouse et al. (1986) derived
two models of inner core anisotropy, a constant model and a model with an r2 dependence (where r
is radius). The constant model shown in Table 4.3 has stronger anisotropy than SPRI0, but this may
be due to uncorrected mantle effects. The volumetric averages of Tromp (1993, 1995a) are similar to
those from this study, although Tromp (1993, 1995a) models vary strongly with radius. The values
of ǫ and σ derived from the set of α, γ and β can be compared to results from body wave studies. In
general, the parameter σ shows large variations from one study to another, but the agreement for ǫ
is better. As demonstrated in the next section, the parameter σ is poorly constrained compared to
ǫ. As expected, SPRI0 value for ǫ is in good agreement with studies based upon either normal mode
data (Tromp, 1993, 1995a) or absolute travel times (Morelli et al., 1986; Su & Dziewoński, 1995).

4.2.2 Robustness

Unlike mantle modelling, the number of model parameters is small for the inner core. The limited
number of model elements allows for detailed monitoring of how an individual parameter changes
with respect to others while studying how they change with different subsets of data. Therefore the
uncertainties associated with each model parameter is assessed using a Monte-Carlo method.

A Monte-Carlo simulation is often used to estimate the uncertainties associated with model
parameters (Huber, 1981). The numbers of splitting function coefficients, PKPDF, PKPBC−PKPDF

and PKPAB−PKPDF used in the inversion are fixed, but a new data set is defined by randomly
picking each datum from the original database, allowing for multiple inclusions. This method replaces
approximately 37% of the original data by duplicated data (Press et al., 1992). Variations in model
parameters obtained from inversions of such data sets are then associated with uncertainties of
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Figure 4.4: Variations in ǫ and σ
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Values of ǫ (x-axis) and σ (y-axis) obtained from Monte-Carlo inversions (black dots) plotted against
one another. The black cross indicates the average values of ǫ and σ with one standard deviation.
For comparison, volumetric average values of ǫ and σ from normal mode studies are shown by
blue triangles, those from absolute travel time studies are shown by red triangles, and those from
differential travel times studies are shown by green triangles.

individual parameter. About 600 inversions are performed, and the averages of the parameters
α, γ, and β are 3.1, 0.76, and 0.62, respectively, with standard deviation of 0.62, 0.33, and 0.31,
respectively. Consequently, ǫ and σ take values of 1.6 and −1.1 with standard deviation of 0.32 and
0.79, respectively. These standard deviations illustrate that α and ǫ are better constrained with the
data than other parameters, especially σ.

The frequency distribution of parameter values is skewed, so the standard deviation should be
considered only as a guide to the model uncertainty. For example, 80% of the σ values obtained
from the Monte-Carlo method lie between −1.5 and −0.14. The skewness is more pronounced for ǫ,
where 80% of the results are found between 1.4 and 2.0. Values below 1.4 do not exist, but values
above 1.7 constitute a relatively long tail. This distribution indicates that ǫ has a distinct minimum
and it must be greater than 1.4 to satisfy the data set.

When the parameters are plotted in ǫ-σ space, many of the results lie along a straight line,
with a correlation coefficient of −0.86 (Figure 4.4). This observation suggests that there is a trade
off between model parameters, which is unavoidable in under-determined inverse problems. It is
interesting to note that most of the volumetrically averaged values of ǫ and σ from various studies
(Table 4.3) plot along the straight line (σ ∼ −3ǫ+ 4). There are some deviants such as Woodhouse
et al. (1986), Shearer et al. (1988), Shearer & Toy (1991), and McSweeney et al. (1997), but there
is no distinction between models based upon modes, absolute or differential travel times.

4.3 Radially Varying Anisotropy

Radial variation in anisotropy is introduced by using more than one radial basis function or by
an a priori condition. In the inversions, model smoothness is not imposed in the radial direction,
i.e., polynomials are damped equally regardless of its order. In general, increasing the number of
radial parameters does not improve the fit if only normal mode data are used in the inversions.
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Table 4.4: Radially Dependent Models of Inner Core Anisotropy

pmax VR(DF) VR(BC) VR(AB) VR(IC) < α > < γ > < β >
0 85 71 74 83 3.5 0.88 0.99
1 84 72 73 83 3.3 0.60 1.2
2 84 71 72 83 3.2 0.59 1.2
3 84 70 72 83 3.2 0.60 1.2

Summary of statistical results from inversions with different maximum radial expansions (pmax)
within the inner core. pmax = 0 is for constant anisotropy (corresponding to the model SPRI0). The
parameters < α >, < γ >, and < β > are volumetrically averaged values of α, γ, and β in percent.

The additional degrees of freedom do improve the fit to body wave data, although it is difficult to
improve fits to both PKPDF and differential travel time data simultaneously.

4.3.1 Models

Table 4.4 summarises the statistical results for radially varying anisotropic models of the inner core.
Note that fits do not necessarily improve with an increase in the number of parameters for all data.
For example, allowing quadratic variations with radius improves the fits to differential travel times,
but not to PKPDF data. Introduction of variations in the radial direction is barely warranted by
data, i.e., χ2/(N − M) decreases only when it is considered to three significant digits. The only
obvious modification occurs when a quadratic term is added to the constant term. As such, the radial
profiles do not change significantly between models using 2 polynomials (Figure 4.5 left panel) and
4 polynomials (Figure 4.5 right panel). Table 4.4 also gives values of volumetrically averaged α, γ,
and β which do not change much with increasing number of radial polynomials.

If the weighting for body wave data is increased, it is possible, with the extra degrees of freedom
in the radial direction, to fit PKPBC−PKPDF data with a variance reduction of more than 80%
while maintaining a good fit to modal and PKPDF data. For example, increasing the weight on the
differential travel times by a factor of 40 in a quadratically parametrised inner core inversion achieves
variance reductions of 81%, 81%, 76%, and 82% for PKPDF , PKPBC−PKPDF, PKPAB−PKPDF,
and inner core sensitive modes, respectively. In general, the choice of weighting does change the
values of anisotropic parameters, but the relative shape of the radial profiles remains the same. For
example, the above model, which fits differential travel times, has volumetrically averaged values
of 3.7, 0.65, and 0.82 for α, γ and β, compared to the values 3.3, 0.60, and 1.2 obtained with the
weighting scheme used for the models in Table 4.4. However the profiles in these two cases appear
the same, with a slight overall shift in the values.

As discussed in the Introduction to this Chapter, layered basis functions are avoided, because
such a parametrisation introduces artificial discontinuities. To illustrate this problem, two parameter
models using even degree polynomials and layers are compared in Figure 4.6. The position of the
layer interface is determined through a systematic search for the best fit to differential data. This
results in slightly better fits for layered models (80%, 76%, 77%, and 84% variance reduction for
PKPDF, PKPBC−PKPDF , PKPAB−PKPDF , and inner core modes, respectively) than polynomial
models with the same number of unknowns, although the difference is not significant. However, the
models as a function of depth look drastically different. Polynomial models give anisotropy that is
smoothly varying, especially for the well determined parameters (α or ǫ, and β to some extent). In
contrast, layered models change considerably from one layer to another. Although both types of
models explain the observed signals, the interpretation of inner core properties based upon the two
models might be quite different. For example, a large jump at the middle of the inner core in layer
models might be taken as evidence for a transition zone. In the central portions of the inner core,
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Figure 4.5: Radially Varying Models with Polynomial Basis Function
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Figure 4.6: Models with Layer and Polynomial Radial Basis Functions
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Comparison of models with two degrees of freedom in the radial direction (two layers and quadratic
polynomials). The the profiles of ǫ (dark blue) and the σ (dark green) are shown for polynomial
basis (solid curves) and layers (dashed lines).

the two parametrisations also yield different results. Layered models suggest that anisotropy is very
weak, even close to zero, whereas polynomial models suggest that the anisotropy is weaker at the
centre compared to shallower depths, but it remains non-zero.

4.3.2 Isotropic Layer Near the Inner Core Boundary

There have been suggestions that anisotropy in the inner core is weak in the top 50–300 km (e.g.,
Shearer, 1994; Song & Helmberger, 1995; Creager, 2000), or that this region is isotropic (e.g., Song
& Helmberger, 1998). To investigate if the hypothesis of an isotropic layer is compatible with
mode and PKPDF data, inversions are performed in which an isotropic layer of varying thickness
is imposed near the inner core boundary. The fit to the mode data and the values of anisotropic
parameters as a function of the thickness of the isotropic layer are shown in Figure 4.7. The fit
improves marginally as the thickness is increased to about 100 km, although the improvement is
not significant. A significant drop in variance reduction starts around 150 km. Normal mode data
appear to be consistent with an isotropic layer up to about 150 km thickness, in agreement with an
observation of Durek & Romanowicz (1999).

The fit to PKPAB−PKPDF and PKPDF at large epicentral distances change only slightly with
the introduction of an isotropic layer and is highly compatible with a layer as thick as ∼ 150 km from
the inner core boundary. Their sensitivity to shallow structure is small, and the fit is achieved by
increased strength of anisotropy in the deeper part. However, PKPDF data at an epicentral distance
range less than 153◦, i.e., data most sensitive to shallowest inner core, exhibit a rapid decrease in
variance reduction with increasing isotropic layer. Moreover, the introduction of an isotropic layer
immediately decreases the variance reduction of PKPBC−PKPDF data and the fit degrades rapidly
when the thickness is more than ∼ 30 km. The degradation of fit contradicts previous differential
travel time studies, but it is due to normal mode constraint: modes do not allow for increase in
interior anisotropy as quickly as required by differential travel time data (Figure 4.7).

These observations are robust and they do not depend upon the maximum number of radial
polynomials or the type of basis functions used. Therefore the existence of an isotropic layer near the
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Figure 4.7: Isotropic Layer near the Inner-Core Boundary
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Fit to splitting function coefficients of inner core modes as a function of the thickness of the isotropic
layer from the inner core boundary (left). The inversion assumes constant anisotropy below the
isotropic layer. The values of the anisotropic parameters, α (blue), γ (green), β (red), ǫ (dark blue),
and σ (dark green) beneath the isotropic layer are shown in the central and right panels.

inner core boundary is not warranted by a joint inversion of mode and travel time data. This result
should be compatible with data from which inferences of isotropic layer have been made. Shearer’s
study (1994) rejected a high (3.5%) level of anisotropy using absolute travel time data at short
distances (132◦ to 140◦). This observation appears to have been mis-interpreted as an argument for
an isotropic layer near the inner core boundary (Song & Helmberger, 1998). Inspection of Shearer’s
data set shows that the global anisotropy model SPRI0 gives a satisfactory fit (Figure 4.8). In
addition, none-zero anisotropy near the inner core boundary is not inconsistent with differential
travel time data as it may appear at first. Although isotropy is strongly advocated, differential
travel times do not rule out the presence of weak (∼ 1%) anisotropy near the inner core boundary
(e.g., Song & Helmberger, 1995; Creager, 2000; Garcia & Souriau, 2000). There is another evidence
for finite anisotropy near the inner core boundary: differential travel times using diffracted PKPBC.

Diffracted PKPBC−PKPDF Data

Because PKPBC−PKPDF measurements at distance greater than ∼ 153◦ use diffracted PKPBC

according to PREM (Dziewoński & Anderson, 1981), these data have not been included in the inner
core study. Diffracted PKPBC travels along the inner core boundary and would be most sensitive
to the shallowest part of the inner core. The measurements of PKPdiff

BC−PKPDF from the 153◦ to
155◦ distance range are compared with PKPBC−PKPDF data at shorter distance ranges (150◦–
153◦) in Figure 4.9. The diffracted data are generally smaller (closer to zero) than PKPBC−PKPDF,
except when cos2 ξ = 0.85. Furthermore, they have a smaller slope and curvature as a function
of cos2 ξ, indicating that integrated anisotropy sensed by this data set is weaker than that from
PKPBC−PKPDF from a smaller distance range. This is even more evident when the anomalous
path from South Sandwich Islands to Alaska is omitted (Figure 4.9b).

The average bottoming depth for PKPDF in the distance range from 150◦ to 153◦ is 250 km, and
it is 285 km for data in the range 153◦ to 155◦. If the shallowest part of the inner core is isotropic,
then diffracted PKPBC would obtain no directional dependence and PKPdiff

BC−PKPDF data from 153◦

to 155◦ should have compatible or larger travel time anomalies than PKPBC−PKPDF from 150◦ to
153◦. A drastic change in anisotropy in the incremental 35 km radius (e.g., negative anisotropy)
may allow smaller anomalies for diffracted data, but inversions with layered inner core anisotropy
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Figure 4.8: Absolute Travel Times from Small Distance Range
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function of 90◦ − ξ rather than cos2 ξ to ease comparison with Figure 9 of Shearer (1994). The
standard deviation associated with each datum is shown as a vertical bar. Predictions based upon
models from Shearer et al. (1988; red curve), Creager (1992; blue curve), and SPRI0 (black curve)
are shown. Note that the strong anisotropy in Creager’s model overpredicts residuals at high values
of ξ. Data courtesy of P. Shearer.

Figure 4.9: Diffracted PKPBC−PKPDF Travel Time Data
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(a) Comparison of PKPBC−PKPDF data from 150◦ to 153◦ (black triangles) and PKPdiff
BC−PKPDF

data from 153◦ to 155◦ (green circles). The yellow dots in the background are individual measure-
ments of PKPdiff

BC−PKPDF . Most PKPdiff
BC−PKPDF data (209 measurements out of 339) are in this

distance range.
(b) Same as in (a), except that the anomalous path from South Sandwich Islands to Alaska has been
removed.
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or other differential travel time studies do not document such a change. This evidence suggests that
the missing signal of anisotropy in PKPdiff

BC−PKPDF is due to the PKPdiff
BC sampling the uppermost

part of the inner core. The evanescent wave does not penetrate deeply into the inner core, but the
accumulation of signal along approximately 50 km of the inner core boundary will be significant, and
comparable to the signal observed in the 120◦ to 130◦ distance range. It appears that anisotropy
near the inner core boundary is also required in order to explain the small values of PKPdiff

BC−PKPDF

data.

4.4 Hemispherically Varying Anisotropy

Several studies have suggested that anisotropy of the inner core have an east-west hemispherical
dependence (e.g., Tanaka & Hamaguchi, 1997; Creager, 1999; Niu & Wen, 2001). The normal mode
data are insensitive to such hemispherical difference, since this pattern corresponds to structure at
spherical harmonic degree one. Therefore, the focus of this section will be on the body wave data
which are divided into subsets based upon their bottoming points for detecting lateral variations in
anisotropy. The eastern and western hemisphere data show a clear difference, but such dichotomy
is also observed when the inner core is divided into the northern and southern hemispheres. Finally,
geometrical argument is presented which suggests that the apparent hemispheric anomalies result
from a small number of travel time measurements, and much of the data can be explained by the
constant anisotropy model.

4.4.1 Data Analysis

Although investigations of hemispheric dependence of anisotropy concentrated on an east-west dif-
ference (e.g., Tanaka & Hamaguchi, 1997; Creager, 1999; Niu & Wen, 2001), the division of the
inner core into eastern and western hemispheres is not the only way in which one can obtain subsets
with distinct behaviour. This effect is demonstrated by separating data according to whether they
bottom in the northern or southern hemispheres. Regardless of the definition of hemisphere, a clear
difference between hemispheres is observed for PKPDF data (Figures 4.10a and b). The hemispheric
subsets of PKPDF agree well with one another in the distance range from 120◦ to 140◦, suggesting
that anisotropy near the inner core boundary does not include variations at hemispheric scale.

When PKPBC−PKPDF data are divided into hemispheres and compared (Figures 4.10c and
d), a smoother variation as a function of cos2 ξ is observed for the northern hemisphere than the
western hemisphere. This is partly due to the separation of two anomalous clusters into different
hemispheres, one associated with the south of Africa earthquake to California stations (cos2 ξ ∼ 0.5)
and another with the South Sandwich Islands events recorded at Alaska (cos2 ξ ∼ 0.8). In contrast
to PKPBC−PKPDF data from the 150◦–153◦ distance range, difference between hemispheres is not
obvious for data between 145◦ and 150◦. Division of data into northern and southern hemispheres
seems to enhance hemispheric differences at this distance range, however, between 145◦ and 150◦,
there are only 9 measurements with cos2 ξ > 0.2 for the southern hemisphere, so little significance
can be attributed. In addition, there is no clear difference between eastern and western or northern
and southern hemispheres for PKPAB−PKPDF data in general (e.g., Figures 4.10e and f). The
difference appears slightly more pronounced for the north-south division, however, it is difficult to
compare the two subsets when the data are so sparse. It is, nonetheless, consistent with PKPDF or
PKPBC−PKPDF data in that the stronger anisotropy trend can be associated with the northern or
western hemisphere.

In general, there is a good agreement between hemispheres when cos2 ξ < 0.7 at all distance
ranges. The travel times diverge rapidly, almost discontinuously, at around cos2 ξ = 0.7, which is
inconsistent with transversely isotropy where travel time depends smoothly on cos2 ξ (equation 2.19).
Therefore, a difference in the strength of anisotropy is not sufficient to explain the observed change
at high cos2 ξ. The ambiguity of hemispherically dependent anisotropy is demonstrated further when
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Figure 4.10: Hemispherical Subsets of Data
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(a) and (b) Comparison of PKPDF data in the distance range between 153◦ and 155◦. The inner
core is divided into eastern (blue triangles) and western (red circles) hemispheres in (a) while it is
divided into northern (blue triangles) and southern (red circles) hemispheres in (b).
(c) and (d) Same as (a) and (b) except that PKPBC−PKPDF data are compared at the distance
range between 150◦ and 153◦. The small triangles and circles are individual measurements. Note
that there are no data between cos2 ξ of 0.2 and 0.4 for the southern hemisphere and between 0.9
and 1.0 for northern hemisphere.
(e) and (f) Same as (c) and (d) except that PKPAB−PKPDF data are compared at the distance
range of 153◦ and 160◦. There are no data between cos2 ξ of 0.6 and 0.7, and 0.9 and 1.0 for the
western hemisphere, between 0.8 and 0.9 for the eastern hemisphere, between 0.5 and 0.6 for the
northern hemisphere, and between 0.8 and 1.0 for the southern hemisphere.
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Figure 4.11: Geometry of PKPDF and Bottoming Latitude
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(a) The relationship between the bottoming latitude of the ray (θ0) and the smallest value of the ray
angle with respect to the rotation axis (ξ). The cross section through the inner core (green circle) is
made in the north-south direction passing through the centre of the sphere. At the bottoming point,
the ray (solid blue line) is perpendicular to the unit vector in radius. This implies that ξ + θ = 90◦,
where θ is colatitude, and hence ξ = θ0.
(b) Plot of the ray’s bottoming latitude (y-axis) against cos2 ξ. The blue curve shows the maximum
cos2 ξ as a function of latitude. The black dots show where individual PKPDF datum between 150◦

and 153◦ distance range plots. Streaks of dots are the results of an earthquake observed at various
stations and/or a station observing a suite of earthquakes.

data are binned to make summary rays depending upon the distance range, the ray angle ξ, and
the bottoming point. One example from 153◦–155◦, which is the distance range where hemispheric
difference is most prominent, is shown in Figure 4.13. Dependence on hemispheres is not an obvious
feature except at high values of cos2 ξ. This approach also highlights the uneven distribution of
data for all values of cos2 ξ, illustrating the difficulties of assessing lateral variations in anisotropy.
Hemispheric dependence, be it east-west or north-south, can not be clearly identified with such
sparse data set. Because large differences are observed only at large cos2 ξ, it is possible that the
differences are due to poorer sampling and local structure. For example, biased sampling of an
anomalous region of the inner core or mantle heterogeneity not included in the mantle correction
can create apparent hemispheric differences. In the following section, the relationship between ray
geometry and sampling location is investigated in an attempt to identify the source of hemispheric
dichotomy for data with cos2 ξ > 0.7.

Ray Geometry: Bottoming Latitude and Ray Angle

The relationship between ray’s bottoming latitude and angle from the rotation axis ξ can be obtained
simply by noting that the smallest angle ξ (hence largest cos2 ξ) for a ray occurs when it is travelling
in the north-south plane perpendicular to the equatorial plane. This implies that the smallest angle ξ
is equal to the latitude of the bottoming point (Figure 4.11a). The relationship between the latitude
of the bottoming point and the largest cos2 ξ is plotted in Figure 4.11(b). Clearly, the data with
high values of cos2 ξ come only from rays bottoming near the equator while those with small cos2 ξ
values bottom at all latitudes. To compare anisotropy near the equator, which shows a puzzling
discrepancy between hemispheres, with that near the poles, the PKPDF data set is divided into
four subsets: eastern polar, eastern equatorial, western polar and western equatorial regions. The
latitudinal division is made so that data with absolute latitude less than 30◦ are put in equatorial
groups and those greater than 30◦ are included in polar subsets. This analysis must rely upon the
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absolute travel times, since the number of differential travel time measurements in a given distance
range is too scarce to permit a meaningful comparison of data behaviour between the four groups.

To ease comparison between the quadrants, only data between cos2 ξ of 0.0 and 0.7 are plotted,
because values above 0.7 do not exist for polar subsets (Figure 4.12). Data from different quad-
rants generally agree in their trend (slope and curvature), with good agreement at distance ranges
(150◦–153◦, 153◦–155◦, and 155◦–160◦) where a strong east-west hemispheric difference is observed.
Moreover, the data trends agree surprisingly well with the prediction from the constant anisotropy
model SPRI0. This suggests that a global anisotropy model can explain much of the data even
if they are divided into hemispheres or quadrants, and apparent difference comes from a limited
number of data. Data with cos2 ξ greater than 0.7 are inevitably less available than data with small
cos2 ξ, and the former data bottom in regions poorly covered by the latter data. This is particularly
true for the western hemisphere where large travel time residuals are observed.

These results suggest that the hemispheric discrepancy is due to a smaller-scale phenomenon than
hemispheric variations. The apparent hemispheric difference is explained easily if small structures
are located in the inner core, however, because of the limited number of paths with cos2 ξ > 0.7 and
uneven coverage, the possibility of effects from the mantle cannot be dismissed.

4.5 Comparison of Absolute and Differential Travel Time

Data

In this section, the discrepancy between absolute and differential travel time data is revisited. If
the correction to absolute travel times and the assumption that the path similarity between the
outer core bottoming phase (PKPBC or PKPAB) and PKPDF removes all non-inner core signal from
differential travel times is valid, the absolute and differential data should agree well with one another.
The difficulty in simultaneously fitting these two sets of data suggests that this is not the case.

PKPBC−PKPDF data in the range from 150◦ to 153◦ are compared with PKPDF from the same
distance range in Figure 4.14(a). The two sets of averaged data agree well in general, except for
4 points at values of cos2 ξ of 0.45, 0.55, 0.75, and 0.85, where the averages of PKPBC−PKPDF

seem to be well constrained by clusters of measurements around cos2 ξ of 0.5 and 0.8. However,
upon inspection of source-receiver pairs, the cluster about cos2 ξ = 0.8 is found to be due to a path
between South Sandwich Islands and Alaska. Data from this path are known to be anomalous (e.g.,
Su & Dziewoński, 1995; Dziewoński & Su, 1998), although the cause of the anomalies has not been
convincingly identified. Many seismologists place the source of these anomalous measurements in the
inner core (e.g., Creager, 1997; Dziewoński & Su, 1998), but there are arguments that they originate
in the mantle (e.g., Helffrich & Sacks, 1994). When data from the path between South Sandwich
Islands and Alaska is removed from the database, both PKPBC−PKPDF and PKPDF values are
changed near cos2 ξ = 0.8. The change in PKPBC−PKPDF data is greater than in PKPDF, because
the data from this path comprises a large part of the entire PKPBC−PKPDF data set. The absolute
and differential data sets agree now at cos2 ξ of 0.75 and 0.85 (Figure 4.14b).

The cluster at about cos2 ξ = 0.5 is also from a single path, mainly due to a single earthquake
south of Africa recorded at 71 stations in California. If this cluster (Figure 4.14c) is removed,
the agreement between PKPDF and PKPBC−PKPDF data is remarkable, and the constant model
of anisotropy SPRI0 fits both sets of body wave data. Inversions constrained only by, or relying
heavily upon, the differential travel times are heavily biased by these anomalous data due to the
abundance of measurements, and would produce models with strong anisotropy. For example, the
model of Creager (1992) based upon differential travel times fits the anomalous data associated with
the paths between South Sandwich Islands to Alaska at the expense of poorly fitting the data at
higher values of cos2 ξ (Figure 4.3). Note that the cluster of measurements from the earthquake
south of Africa were not included in that study, since the earthquake occurred on March 29, 1993.

One obvious question for the Africa to California measurements is whether the anomalously
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Figure 4.12: Four Subsets of PKPDF Data at Various Distances
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Data with different colors correspond to quadrants: eastern polar region (|latitude| > 30◦ with 0◦ ≤
longitude < 180◦, green), eastern equatorial region (|latitude| ≤ 30◦ with 0◦ ≤ longitude < 180◦,
blue), western polar region (|latitude| > 30◦ with 180◦ ≤ longitude < 360◦, yellow), and western
equatorial region (|latitude| ≤ 30◦ with 180◦ ≤ longitude < 360◦, red). Data with cos2 ξ > 0.65 are
available for the two equatorial regions, however, the data are truncated at 0.65 to ease comparison
between the four data sets. The black curve is the prediction based upon constant anisotropy model
SPRI0.
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Figure 4.13: PKPDF Data from 153◦–155◦ as a Function of Ray Angle and Bottoming Location
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Size and colour of circles represent magnitude and sign of absolute travel time averages at the given
ray angle range and bottoming location bin. For each plot, the average has been removed to enhance
lateral variations. The center of each bin is obtained from dividing the Earth into 362 nearly equal
area triangles using triangular tessellation (Figure 2.11). The radius of each bin is 10◦. Unusually
large values are due to bins with only one or two measurements.
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Figure 4.14: Absolute and PKPBC−PKPDF Travel Times
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(a) Comparison of PKPDF data (blue circles) and PKPBC−PKPDF data (green triangles) in the
distance range 150◦–153◦. To ease visual comparison, the sign of the PKPDF data has been reversed,
and a baseline shift has been applied. The background yellow dots are individual PKPBC−PKPDF

measurement, and the solid curve is the prediction based upon the constant anisotropy model SPRI0.
(b) Same as in (a), except that the data from the path between South Sandwich Islands and Alaska
have been removed.
(c) Same as in (b), except that data from an earthquakes located south of Africa recorded at stations
in California are removed.
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Figure 4.15: Effect of Earthquake Mislocation on PKPBC−PKPDF Travel Times
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Perturbations to differential travel time as a function of different epicentral locations with respect
to travel time calculated with Engdahl et al. (1998) hypocentre. Epicentres determined by three
groups, NEIC (circle), Engdahl et al. (1998, diamond), and Harvard CMT catalogue (Dziewoński et
al., 1994; star) are shown.
(a) Earthquake located at depth of 20 km. This is the depth of the earthquake given by Engdahl et
al. (1998).
(b) Earthquake located at depth of 100 km.

negative values can be reconciled by earthquake mislocation. This is of particular concern because
events in the southern hemisphere, due to poor station coverage, are more likely to be mislocated.
Indeed, there are variations in the epicentral locations of this earthquake with Mw 5.7 (Harvard CMT
catalogue, Dziewoński et al., 1994) determined by various institutions (Figure 4.15). To investigate
if earthquake location can explain the observed data, average PKPBC−PKPDF travel time due of
the cluster is computed as a function of earthquake location (Figure 4.15). If earthquake mislocation
is the source of anomalous data, then there should be a nearby location with travel time that is
comparable to the prediction by SPRI0 (∼ +0.5 seconds). Comparison of Figure 4.15(a) and (b)
show that the effect due to depth of the earthquake is insignificant, and is not detectable at the
scale used in these figures. Varying the epicentral location gives larger changes in the travel times,
but because this is differential, rather than absolute, travel time, the changes are small. In order to
obtain a value of +0.5 seconds, the earthquake must be mislocated by about 150 km to the west.
Mislocations of this magnitude, even in the southern hemisphere, is unlikely. So earthquake location
does not appear to be the only source of anomalous PKPBC−PKPDF measurements around cos2 ξ
of 0.5.

Comparison of PKPAB−PKPDF and PKPDF in the range 160◦ to 165◦ is presented in Fig-
ure 4.16(a). In general, the two types of data agree well, which is surprising considering the likelihood
of contamination from the mantle in PKPAB−PKPDF data. The only exception is at cos2 ξ = 0.75,
where the PKPAB−PKPDF average seems to be well constrained by numerous points between cos2 ξ
values of 0.7 and 0.8. However, examination of these points reveals that they originate, with one
exception, from a single earthquake near Bouvet Island recorded at 35 stations in Alaska. Removal of
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Figure 4.16: Absolute and PKPAB−PKPDF Travel Times
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(a) Comparison of PKPDF (blue circles) and PKPAB−PKPDF (green triangles) in the distance
range 160◦–165◦. There are no measurements of PKPAB−PKPDF with cos2 ξ greater than 0.8 in
this distance range. To ease visual comparison the sign of PKPDF has been reversed, and a baseline
shift has been applied. The background yellow dots are individual differential PKPAB−PKPDF

measurement.
(b) Same as in (a), except that the data from an earthquake near Bouvet Island recorded at stations
in Alaska are removed.

Figure 4.17: Bottoming Point Coverage of the Inner Core

Plot of all bottoming points for PKPBC−PKPDF (left), PKPAB−PKPDF (centre) and PKPDF (right)
data. This plot is made using all data from all distances and ray angles.

this earthquake (Figure 4.16b) does not improve the compatibility of PKPAB−PKPDF and PKPDF,
but since the average at cos2 ξ = 0.75 is determined by a single datum, it is possible that this
discrepancy reflects either another anomalous path or substantial mantle heterogeneity or source
mislocation.

These comparisons demonstrate the sampling bias in the differential travel time data set. Fig-
ure 4.17 shows the coverage of the inner core with the entire set of PKPBC−PKPDF, PKPAB−PKPDF

and PKPDF data in terms of bottoming point. This is not a fair comparison in the sense that the
epicentral distance covered by the three types of data differ considerably. However, if inner core
anisotropy is constant as in SPRI0, all distances are considered equally and thus comparison be-
comes valid. Most of the inner core is not sampled by the differential travel time measurements, but
it is well sampled by PKPDF data except for some spots in the south Atlantic. This explains why
PKPDF data are highly compatible with normal modes. Additional problem with poor coverage
is that it cannot assure the cancellation of effects due to variations within the mantle. These are
likely to be the reason why differential data are poorly fit by a simple model of the inner core. The
deviation of differential travel times from the constant model is investigated in the next section.
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4.6 Residual Data

The model SPRI0 does not achieve a perfect fit to data used in the inversion. This section focuses
on the signal that is not explained by SPRI0 to understand why the misfit occurred and if this signal
contains useful information for deep Earth structure not considered in the modelling.

4.6.1 Residual Splitting Function Coefficients

In Figure 4.18(a), three splitting functions for the inner core sensitive mode 8S1 determined by differ-
ent groups are shown. Before mantle and inner core corrections are applied, the three measurements
agree very well with one another, both in terms of amplitude and pattern. After corrections, all
residual splitting functions exhibit an almost pure degree 2 order 1 pattern. However, the relative
importance of the real and imaginary parts (or sine and cosine parts) of this spherical harmonic
component are different, resulting in rotated residual patterns with respect to one another. Perhaps
this signal is related to differential rotation of the inner core, since the observed splitting functions
are derived from earthquake records spanning different times. He & Tromp (1996) use records from
the Bolivia and Kuril events in 1994, Resovsky & Ritzwoller (1998) use records from 33 earthquakes
between 1977 and 1995, and Durek & Romanowicz (1999) use records from 8 earthquakes between
1994 and 1996. The rotation rate obtained by comparison of the He & Tromp (1996) and Durek &
Romanowicz (1999) residuals would give a large rotation rate, incompatible even with body wave
estimates (e.g., Song & Richards, 1996; Su et al., 1996; Creager, 1997). Rather, the differences are
within the uncertainties of splitting function measurements. This is more apparent when observa-
tions for less well-determined modes are compared (Figure 4.18b). The two measurements of the
splitting function for mode 13S2 are similar in their banded signal, but their non-zonal parts are
strongly anti-correlated.

To investigate the general pattern of the splitting signal that has not yet been modelled, splitting
function residuals are stacked after the removal of mantle and inner core effects (Figure 4.19). Each
residual splitting function is normalised, summed, and divided by the number of data available. If
individual residuals are random noise, then this averaging process should give a stacked residual that
is close to zero. The amplitude of stacked residuals for both mantle and inner core modes are much
less than one (Figure 4.18), but the amplitude for mantle modes is lower than for inner core sensitive
modes. The residual map of inner core modes has a strong spherical harmonic degree 2 order 2
pattern, but that of mantle modes are dominated by structure at higher degrees. If the residual
pattern of inner core modes is coming from inner core properties, then it may require another type
of anisotropy or more than one symmetry axis. However, it is also possible that this signal originates
in the deep mantle, since many mantle modes (e.g., numerous surface wave equivalent modes) are
not strongly sensitive to the lower-most mantle.

4.6.2 Residual Differential Travel Times

The issue of a possible mantle signal in differential travel times is addressed by plotting the indi-
vidual differential travel time residual (observed travel time minus travel time due to inner core
anisotropy) against predicted differential travel time arising from a compressional wave model of the
mantle (Antolik et al., 2003). The results for PKPBC−PKPDF and PKPAB−PKPDF are shown in
Figure 4.20. In general, the predicted residuals due to mantle structure is much smaller than the
observed residuals, consistent with the results of Bréger et al. (1999, 2000). For PKPBC−PKPDF,
there is no correlation between observed and predicted residuals if the entire data set is considered,
but if measurements from the two anomalous paths, from South Sandwich Island to Alaska and
from south of Africa to California, are removed, the data are slightly correlated. The large residuals
from the two anomalous paths deviate far from the main cluster and clearly stand out in this plot.
Although part of this deviation could be due to structure near the core-mantle boundary that is not
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Figure 4.18: Residual Splitting Function Coefficients

DR
96%

HT
83%

RR
94%

DR
75%

HT
82%

Observed Mantle Inner Core Residual

Observed Mantle Inner Core Residual

(a)

(b)

Splitting functions given by Durek & Romanowicz (1999) denoted “DR”, He & Tromp (1996) denoted
“HT”, and Resovsky & Ritzwoller (1998) denoted “RR”. Observed splitting functions are plotted in
the first column, the second and third columns show predictions based upon the mantle and inner
core parts of SPRI0, and the final column is the residual splitting function. The variance reduction
for each measurement using SPRI0 are indicated beneath the mode name. The colour scale is fixed
for each mode.
(a) Comparison of mode 8S1.
(b) Comparison of mode 13S2.
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Figure 4.19: Stacked Residual Splitting Functions
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Stacked residuals for inner core sensitive modes (left) and for mantle sensitive modes (right). The
top row is the residual pattern using degrees 2, 4, and 6, and the three rows below show residual
pattern at individual degrees. The scale is fixed for all plots and is chosen to slightly over-saturate
the amplitude of stacked inner core modes with all degrees (±0.2).

in the mantle model, the residuals are too large to be explained completely by mantle heterogeneity,
demanding a further analysis in the future.

A similar comparison for PKPAB−PKPDF data exhibits a stronger correlation between predic-
tions and observations, indicating that mantle structure is important for this data set. There is high
correlation with a correlation coefficient of 0.7, but the range of amplitudes for predictions are much
smaller than those of the residuals. It suggests that the compressional wave model in the lower-most
mantle is under-estimated as has been documented for shear wave speed models (e.g., Ritsema et al.,
1998; Bréger & Romanowicz, 1998). Creager (1999) performed a similar experiment using a mantle
model by Kárason & van der Hilst (2001), comparing mantle predictions with PKPBC−PKPDF and
PKPAB−PKPDF. He found no significant correlation between data and prediction from the mantle
model. This may be due to inner core anisotropy signal obscuring correlation and under-estimation
of mantle structure near the core-mantle boundary.

Previous studies have suggested that most of differential travel time signals may be associated
with heterogeneity in the lower-most mantle, where the ray paths differ considerably (Song & Helm-
berger, 1997; Bréger et al., 1999, 2000; Tkalčić et al., 2002). Instead of modelling the mantle with
raw differential data, residuals after inner core corrections are considered. These residuals are placed
at the outer core entry and exit points of the PKPBC or PKPAB ray and the average for each 10◦ by
10◦ block is calculated. The inherent assumption in this exercise is that the residuals originate from
PKPBC or PKPAB sampling the lower-most mantle rather than PKPDF. With this assumption,
positive and negative residuals are associated with slower and faster wave speeds, respectively. Note
that positive anomalies, if ascribed to the PKPDF part of the differential data, imply faster than
average wave speed and vice versa. This procedure does not spread residuals along the ray path of
PKPBC or PKPAB, nevertheless, the resulting maps give an indication of the importance of mantle
structure near the core-mantle boundary.

Figure 4.21(a) shows the hitcount and residual map of PKPBC−PKPDF. The hitcount map
shows a very biased distribution, with most of the core-mantle boundary poorly sampled (regions in
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Figure 4.20: Residual and Predicted Differential Travel Times due to Mantle Structure
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(a) Plot of PKPBC−PKPDF residuals after correcting for constant anisotropy in the inner core (x-
axis) and travel time anomalies predicted by mantle heterogeneity based upon the compressional
wave speed model of Antolik et al. (2003) (y-axis). The blue dots are for a path between the South
Sandwich Islands and Alaska, red dots are for a path between south of Africa and California and
black dots are for other paths.
(b) Same as in (a) except for the PKPAB−PKPDF data. The blue dots are for a path between
the South Sandwich Islands and Alaska, and red dots are for a path between Bouvet Island and
California.

black) as expected. There are exceptions, for example, the areas under north-western Canada and
the southern Atlantic are well sampled by measurements from the South Sandwich Islands events
recorded at stations in Alaska. Similarly, the paths from south of Africa to numerous stations in
California appear as high counts near Antarctica and the south-western United States. The strongest
features in the map of PKPBC−PKPDF travel times before inner core corrections is a zonal pattern,
i.e., positive anomalies (red to yellow) at high latitudes and negative (blue to green) anomalies near
the equator. The map view of PKPBC−PKPDF after inner core corrections, in contrast, is highly
non-zonal. There are still some strong features, such as a positive (slow if due to PKPBC) anomaly
in the south Pacific and a negative (fast) anomaly between South America and Antarctica. However,
the amplitude of these anomalies is much lower compared to a map without inner core corrections.

Although there are more PKPAB−PKPDF data, Figure 4.21(b) shows that they still come from
limited source-receiver pairs; the data cover the globe unevenly, with a bias towards the western
hemisphere. Therefore, the averaging procedure is insufficient to cancel out the mantle contribution.
The zonal pattern observed in the uncorrected map of PKPBC−PKPDF is not present for raw
PKPAB−PKPDF map, and the pattern from raw data looks similar to the corrected PKPBC−PKPDF

map. The map of PKPAB−PKPDF after inner core corrections appears virtually identical to the
uncorrected map, although inner core corrections reduce the amplitude of the residuals. PKPAB is
a ray that grazes the core-mantle boundary where strong heterogeneities have been observed (e.g.,
Garnero et al., 1998). Hence it is not surprising if PKPAB−PKPDF contain strong signals from
mantle heterogeneity.

The residual patterns for PKPBC−PKPDF and PKPAB−PKPDF are very similar in regions that
are well sampled, suggesting that these signals originate in the lower-most mantle. The difference
in amplitude between the two maps arises, because PKPAB is nearly horizontal in the lower-most
mantle, and is affected more strongly by structure near the core-mantle boundary. Some of the
features observed in the residual maps agree with compressional wave speed models near the core-
mantle boundary, such as the fast anomaly under India and eastern Asia, and the slow anomaly
in the southern Pacific ocean. In addition, the fast, linear anomaly in the northern Pacific is also
consistent with some models (e.g., Vasco & Johnson, 1998; van der Hilst et al., 1998; Boschi &
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Figure 4.21: Residual Differential Travel Times
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(a) Hitcount map for PKPBC−PKPDF measurements (top). Black regions indicate poor sampling
and white indicate well-sampled regions. Note that the number of data is much smaller compared
to conventional seismic tomography of the mantle or PKPDF measurements from ISC. Accordingly,
the scale is the number of rays rather than its logarithm.
Map view of raw (middle) and residual (bottom) PKPBC−PKPDF plotted at the entry and exit
points of PKPBC. Red regions indicate places with positive travel time anomalies and blue regions
indicate negative anomalies.
(b) Same as in (a) except for PKPAB−PKPDF measurements.

Dziewoński, 1999; Kárason & van der Hilst, 2001) and this feature is also observed in some shear
wave models (e.g., Gu et al., 2001). Furthermore, the locations of slow anomalies in the residual
maps (Figures 4.21) correspond well with observations of ultra low velocity zones, for example,
underneath southern Pacific and Africa (e.g., Mori & Helmberger, 1995; Garnero & Helmberger,
1996; Vidale & Hedlin, 1998; Garnero et al., 1998). However, there are structures in the residual
maps, such as a slow anomaly under Canada and Alaska, that do not exist in whole mantle models.
Most tomographic models are fast in this region, with some exceptions, such as the shear wave model
of Su & Dziewoński (1997), which has close to zero value, and the compressional wave model of van
der Hilst et al. (1998) with a negative anomaly underneath Alaska. The D” model of Tkalčić et
al. (2002), based upon PcP−P and differential data, also shows a negative velocity anomaly under
Canada. This anomaly contributes to the large positive PKPBC−PKPDF measurements for the path
between South Sandwich Islands to Alaska (Figure 4.14).

The residual patterns, especially that of PKPAB−PKPDF, agree well with the D” model of Tkalčić
et al. (2002). The main difference between the maps shown in Figures 4.21 and the structure obtained
by Tkalčić et al. (2002) is the strength of the anomalies. The residual maps of PKPBC−PKPDF

and PKPAB−PKPDF generally have an amplitude of ±1.5 seconds, and if the signal is assumed
to come from a sampling length of 300 km, then a simple conversion gives approximately ±7%
variations. These calculations do not consider the geometry and length of the PKPBC or PKPAB

ray path, so this is likely to be an over-estimate. Most compressional wave models (e.g., Bolton,
1996; Boschi & Dziewoński, 1999) have amplitudes of ±1% near the core-mantle boundary and so
does much of the D” model of Tkalčić et al. (2002), although the latter includes anomalies in excess
of ±2.5%. Nonetheless, amplitudes as large as ±7% have been observed in the bottom-most mantle
using diffracted P waves (Sylvander et al., 1997).

These observations indicate that most of the differential anomaly that is not explained by the
constant inner core anisotropy model can be attributed to heterogeneity deep within the mantle.
The strong anisotropy in inner core models derived from differential travel time data is due to local
anomalies or structure near D”. In particular, the deepest inner core model obtained from differential
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Figure 4.22: Set Up for Mantle Convection Simulation

Summary of grid points, and physical parameters used in mantle convection simulation. Figure
courtesy of R. Pysklywec.

travel times is constrained only by a heavily contaminated PKPAB−PKPDF data, making inferred
increase in anisotropy questionable. Inverting for inner core structure using normal mode, absolute,
and differential travel time data allows for separation of mantle and inner core effects.

4.7 Small-Scale Mantle Heterogeneity and Differential Travel

Times

In order to assess the effects of mantle structure on differential travel times, especially the small-
scale features on PKPBC−PKPDF data, rays are shot through models of the mantle obtained from
mantle convection simulations. The purpose of this study is to see if anomalously large travel times
can be generated by mantle heterogeneity, and if so, what kind of structure is responsible for the
extreme values. In addition, it will be important to investigate the distribution of travel time values.
Multiple measurements or averaging scheme used to reduce the mantle effect is only valid if data
follow a Gaussian distribution.

Because of the paths geometry, differential travel time data are thought to be only sensitive
to the mantle structure near the core-mantle boundary (e.g., Bréger & Romanowicz, 1998). For
much of the mantle, the difference between ray paths is considered too small in comparison to the
wavelength of heterogeneities, except in the lower-most mantle. Correspondingly, large values of
mantle induced PKPAB−PKPDF are expected to occur as the epicentral distance is increased, since
the separation of the rays increases with epicentral distance. There is no agreement upon the strength
of the mantle contribution to PKPAB−PKPDF, and the amount of PKPAB−PKPDF attributed to
mantle heterogeneities ranges from zero (inner core studies) to more than 4 seconds (D” studies).
For PKPBC−PKPDF, the ray paths of PKPBC and PKPDF move away from one another as the
epicentral distance is decreased, because PKPBC is a retrograde phase. Nonetheless, the two paths
are close at all epicentral distances, and PKPBC−PKPDF data are thought to be insensitive to the
mantle structure.
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Models from Convection Simulations

The convection simulation is performed using an axisymmetric formulation and the finite difference
technique (Pysklywec & Mitrovica, 2000). This simulation includes phase transition at the 660-km
discontinuity with density jump at the boundary (Figure 4.22), but detailed description can be
found in Pysklywec & Mitrovica (2000). The mantle model obtained from the simulation consists of
values of absolute density at each grid point, and perturbations in density are derived by removing
the average at each depth. To convert density variations to compressional wave speed variations,
the depth dependent linear relationship given by Karato (1993a) is used. This conversion factor is
defined for most part of the mantle, but values near the Moho and the core-mantle boundary are
not available. Therefore, Karato’s profile is supplemented with a value of 0.36 which is the depth
independent value used in the previous Chapter.

A pair of rays, PKPDF and outer core bottoming phase, are shot through the mantle model,
and the starting point of the rays is moved systematically to sample the model completely. The
differential travel times are plotted as a function of the starting point in order to identify mantle
structure responsible for the variations. Note that differential travel time is calculated for rays
sampling the mantle once, either going down to the core-mantle boundary or coming up to the
surface, rather than the full path where rays go down to the core-mantle boundary, travel through
the core, and then return to the surface.

Figure 4.23 illustrates the variations of PKPAB−PKPDF obtained from one of the simulation
models. Although the mantle heterogeneity is relatively smooth, PKPAB−PKPDF changes rapidly,
often producing cusps and discontinuities which are well correlated with small structures in the upper
mantle. The figure also shows that the greatest negative anomaly has larger amplitude than the
maximum positive anomaly. This is seen more clearly when the differential travel times are plotted
in histograms. The distributions are all skewed with a longer tail in negative travel times. Most
Gaussian-like behaviour, with clustering near zero, is observed at the shortest distance, where the
ray paths are most similar. At larger distances, the main peak occurs around 1 second, and often,
there are multiple peaks. Furthermore, the range of travel times expands as the distance increases.

As expected, the effect of mantle structure on PKPBC−PKPDF is much weaker than on PKPAB

−PKPDF (Figure 4.24). The variations in differential travel times with different starting locations
are similar to those of PKPAB−PKPDF with fluctuations which are well correlated with upper mantle
features, especially the fast anomalies. These fluctuations are quite large at 145◦, but it is barely
visible at 152◦. Although the distributions of PKPBC−PKPDF residuals are more Gaussian-like
than for PKPAB−PKPDF with a peak near zero, there are extreme values even for closely spaced
rays of PKPBC−PKPDF (Figure 4.24).

Test Models

If mantle anomalies are distributed randomly within the mantle, travel times should form a Gaussian
distribution. However, in reality, the mantle has well-defined linear subductions and upwellings that
are not randomly oriented. To investigate the effect of coherent structures in the mantle, results
using test models are analysed. The first test model contains a vertical low density anomaly and a
subduction whose orientation is assigned by the PKPAB path calculated at the epicentral distance
of 160◦. The maximum density perturbation at every depth is set to ±1.5% and the width of the
anomalies is kept constant. Results are shown in Figures 4.25 and 4.26. Because there are only
two anomalies, the rays mainly travel through homogeneous mantle, so travel times are mostly zero.
However, when the anomalies are sampled, extreme travel times are observed. In addition, the
fast structure recreates the skewness in the distribution of PKPAB−PKPDF with long tail in the
negative values (Figure 4.25). The multiple peaks are not reproduced, but comparison of results from
different simulation models suggests that they are related to multiple occurrences of slow and fast
wave speed anomalies with different orientations. In contrast, the distribution of PKPBC−PKPDF

have a longer tail in the positive values which is not observed in results from convection simulation
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Figure 4.23: PKPAB−PKPDF from Simulated Mantle Heterogeneity
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(top) Compressional wave speed and travel time variations at three different epicentral distances,
151◦ (left), 165◦ (centre), and 170◦ (right). The colour scale is given in percent compressional wave
speed variations. The green curve around the yellow circle represents variations in the differential
travel times due to the mantle structure with the yellow circle as the zero reference. PKPAB−PKPDF

residual is positive when the green curve is plotted outside this circle, and negative when it is inside.
The perturbation in differential travel time is plotted at the angle at which the two rays originate.
The black curves overlaying the mantle are the ray paths at positions where maximum and minimum
travel times are obtained. More vertical of the two rays is the PKPDF path in the mantle and the
other is the PKPAB path.
(bottom) Histogram of differential travel times obtained for the three epicentral distances. The num-
ber of measurements within each travel time range is given in percentage of the entire measurements.
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Figure 4.24: PKPBC−PKPDF from Simulated Mantle Heterogeneity
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Same as in Figure 4.23 except that PKPBC−PKPDF travel times are considered at 145◦ (left) and
152◦ (right) distances.
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Figure 4.25: PKPAB−PKPDF from the Test Mantle Model
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Same as in Figure 4.23 except that the heterogeneities are calculated from the test model with
vertical low density anomaly and high density anomaly that follows the path of PKPAB. Note
that there is a long tail in negative travel times (i.e., zero travel time is not at the centre of the
histograms).

models (Figure 4.26). This is due to the particular choice of structures, and there are orientations
of slow and fast anomalies which produce distributions of PKPAB−PKPDF and PKPBC−PKPDF

with larger negative values.
The second test model addresses the question regarding the source of extreme differential travel

times. Contrary to expectation, large values of PKPAB−PKPDF and PKPBC−PKPDF are observed
near strong upper mantle heterogeneity. Consequently, the second test model is constructed using
the first model but without anomalies in the lower mantle. The travel times are generally smaller
than obtained using simulation models, but they are not trivial when the upper mantle anomalies
are sampled (Figures 4.27 and 4.28). The resulting distributions of travel times appear as δ-functions
for both PKPAB−PKPDF and PKPBC−PKPDF, but there is a relatively wide range of values which
may have significant consequences.

Summary

Shooting rays through mantle models showed some unexpected results. Observations of large travel
times are strongly correlated with near surface features, and extreme differential travel times can
be produced by upper mantle structure even for PKPBC−PKPDF.. Furthermore, the distributions
of travel times are not Gaussian, and the most frequently observed values are often non-zero. The
skewness of the distributions can be explained by the angle of linear structures within the mantle,
and the multiple peaks in distribution can be associated with the number of anomalies with varying
orientations. These observations suggest that the effects due to the mantle can be much stronger for
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Figure 4.26: PKPBC−PKPDF from the Test Model
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Histogram of differential travel times obtained at 145◦ (left) and 152◦ (right) epicentral distances.

Figure 4.27: PKPAB−PKPDF from Upper Mantle Heterogeneity
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Same as in Figure 4.23 except that the mantle model is the test model with only structure in the
upper mantle.
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Figure 4.28: PKPBC−PKPDF from Upper Mantle Heterogeneity
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Same as in Figure 4.27 except that PKPBC−PKPDF travel times are considered.

differential travel times than often assumed in inner core studies. For example, the upper mantle
below Alaska contains a small-scale fast anomaly associated with the subducted slab. This feature
may have the right structure for producing anomalously large PKPBC−PKPDF observed for the
path between South Sandwich Islands and Alaska. Another anomalous path is one between south
of Africa and California. Extreme travel time values are often observed in the ray shooting exercise
when one of the rays sample slow anomalies. There is a significant slow anomaly beneath Africa
extending from the surface to the core-mantle boundary which structure may contribute to the large
differential travel times observed.

The deep mantle structure produces diffuse variations in differential travel times, thus a strong
correlation, such as that for the upper mantle structure, is not observed. This is probably because
in the simulation models, anomalies near the core-mantle boundary are not as narrow as those
near the surface. Global tomographic models are also dominated by long-wavelength features near
the core-mantle boundary, but regional studies suggest that there may be rapid and considerable
variations at the bottom of the mantle (e.g., Garnero et al., 1998). Such variations should produce
large differential travel times because the ray separation is greatest in the deepest mantle.

There are several assumptions involved in these experiments, one of which is that the lateral
perturbations in wave speeds are weak enough that the ray paths are not affected. Ray tracing
studies indicate that lateral variations can bend rays considerably (e.g., Moser et al., 1992; Liu et
al., 1998). Small amount of ray bending may make significant contribution, because it can change the
ray separation considerably. In addition, the anomalies that are likely to produce large differential
travel times are small, especially for PKPBC−PKPDF data. For such small anomalies, ray theory
may no longer be valid, and contributions from structures around the path may become important.
Therefore, a numerical simulation of wave propagation is required in order to robustly establish the
relation between narrow mantle structure and differential travel time anomalies.
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4.8 Discussion

A simple model of inner core anisotropy, one that does not vary with radius, has been shown to
satisfy normal mode, absolute and differential travel time observations. The differential travel times
are not as well explained by this model as other data, but there are indications that variations
in properties outside the inner core or small structures within the inner core are responsible for
the misfit. In particular, residual differential travel times suggest that there may be a strongly
heterogeneous region near the core-mantle boundary. The mantle model used to correct PKPDF

does not include this layer nor does the model derived from the mode inversion. Because PKPDF

data have better coverage, and since they are almost vertical when they enter or exit the core, the
effect of the layer near the core-mantle boundary will be small. Similarly, deeply penetrating modes
have a broad kernel near the core-mantle boundary, and the splitting due to this layer will not be
substantial. Furthermore, the zonal component of the heterogeneity indicated by residual differential
travel times is relatively small, so the effect on the zonal part of the splitting function, which is the
component used in inner core modelling, is negligible. On the other hand, the non-zonal residual of
inner core sensitive modes (Figure 4.18), may be related to the structure in the lower-most mantle.

The model of constant anisotropy contradicts the hypothesis that the inner core is isotropic
near the inner core boundary (e.g., Song & Helmberger, 1998; Ouzounis & Creager, 2001; Song &
Xu, 2002). Normal mode data can accommodate an isotropic layer of less than 150 km thickness,
however, data from body waves penetrating shallowly in the inner core cannot be well explained by
a model with an isotropic layer. Recent studies based upon waveform modelling propose inner core
models with a ∼ 250 km thick isotropic layer with a highly anisotropic (∼ 8%) interior (Ouzounis
& Creager, 2001; Song & Xu, 2002). Normal mode observations would not be consistent with this
model, since the isotropic layer is too thick to fit modes which are only sensitive to the shallow part
of the inner core, and the interior is too strongly anisotropic for modes with deeper sensitivity. In
addition, ∼ 8% anisotropy over-predicts PKPDF data at distances above 150◦.

Another complication in inner core anisotropy introduced by differential travel time observa-
tions is its hemispheric or quasi-hemispheric dependence. It is true that hemispherically averaged
data show a distinct behavior between the eastern and western hemispheres, but the number of
measurements used for each hemisphere differ greatly, and it is not clear how much of the hemi-
spheric discrepancy originates from biased sampling. The inversion results show an unreasonably
large difference between hemispheres, and the improvements in fit, by modelling the inner core in
hemispheres, are only marginal. Physically, the inner core is thought to be homogeneous due to its
slow growth within a homogeneous liquid (e.g., Jacobs, 1953). Even if the possibility of hemispheric
variations is accepted, it will be difficult to explain large and discontinuous behaviour of travel times
which is inconsistent with transverse isotropy. On the other hand, data from the two hemispheres
are similar at small values of cos2 ξ. At some distance ranges, data from the two hemispheres ex-
hibit baseline differences when cos2 ξ is small, but this may be due to poorly constrained degree 1
structure in the mantle. A baseline shift cannot be easily related to anisotropy.

This study highlights the advantage of combining different types of data which are sensitive to
inner core structure. In particular, normal mode data with less biased sampling of the inner core
provide an invaluable constraint on anisotropy at a global scale. In addition, the attempt to derive
a model which simultaneously satisfies normal mode, absolute travel time, and differential travel
time data has allowed for the separation of signal from global anisotropy of the inner core, and
identification of anomalous travel times. There are some signals, such as residual degree 2 order 2 in
splitting function and the apparent difference of body wave data between the eastern and western
hemisphere, that remain unexplained.
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Chapter 5

Inner-Most Inner Core

5.1 Introduction

Anomalous behaviour of data from nearly antipodal distances has been noted in the earliest study
of inner core anisotropy, although it has not been studied rigorously. The distribution of antipodal
data in Figure 1 of Morelli et al. (1986) exhibits large positive travel times at mid-latitudes that
are not observed at smaller distances. Later studies of inner core anisotropy using PKPDF travel
times are also characterised by models with considerably stronger anisotropy near the centre of the
Earth (Su & Dziewoński, 1995; Tromp, 1995a). Stronger anisotropy at the central inner core is also
inferred from the differential travel times of PKPAB−PKPDF (e.g., Vinnik et al., 1994; Song, 1996)
although these data may contain significant effects from mantle heterogeneities near the core-mantle
boundary (e.g., Song & Helmberger, 1997; Bréger et al., 2000). Joint inversion of normal mode,
differential and absolute travel time data has shown that a constant model of anisotropy, weaker
than that inferred by the differential travel time studies can explain much of the signal in these data
(Ishii et al., 2002a,b). However, arrival times of PKPDF from distances between 173◦ and 180◦,
sampling the central 300 km of the inner core, exhibit large deviations from predictions (Ishii &
Dziewoński, 2002).

Motivated by the poor fit, data from the epicentral distances between 173◦ and 180◦ obtained
from earthquakes and stations shown in Figure 5.1 are examined in this Chapter. Unfortunately,
most of currently available normal mode data are insensitive to structure in the central 300 km
of the Earth. This lack of mode constraint is because sensitivity of a mode is determined based
upon its eigenfunctions which must vanish at the centre of the Earth. Therefore, experiments are
performed only with absolute travel times to test if observed deviations are robust features associated
with globally coherent change in anisotropy, and if the material still exhibits transversely isotropic
behaviour at the centre of the core. In addition, data are analysed for the location of the best-fitting
symmetry axis. Several tests are performed to determine how the inferred location is influenced by
data distribution, prescribed weighting, and some anomalous paths.

5.2 Data Robustness

The constant anisotropy model obtained from joint inversion of mode and body wave data explains
the absolute travel times well, except between 173◦ and 180◦ (Figure 5.2a and b). In particular,
the residuals from the antipodal distances show strong dependence on cos4 ξ (Figure 5.2d). The
large deviations observed at this distance range may be associated with structure in the deepest
inner core, but it is also possible that they are due to biased sampling. For example, the datum
from the 153◦–155◦ distance range with 0.8 ≤ cos2 ξ < 0.9 has been strongly biased by data from
the path between South Sandwich Islands and Alaska (Figure 5.2c). When data from this path are
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Figure 5.1: Distribution of Earthquakes and Stations for Antipodal Data

Distribution of nearly 1800 earthquakes (left) and 400 stations (right) for which PKPDF arrival times
at the distances of 173◦ to 180◦ are reported.

removed, the residuals at cos2 ξ = 0.65 and 0.75 are close to zero. In the following investigations,
data are corrected for effects of anisotropy in the upper 920 km of the inner core using the constant
anisotropy model SPRI0 (Ishii et al., 2002a) to focus on the deviations from the SPRI0 model.

To begin, data are divided into four subsets on the basis of their bottoming points as discussed
in the previous Chapter (Figure 5.3). If data dependence on cos2 ξ is due to a limited number of
isolated data or regional variations, the four curves should differ from one another. Correspond-
ingly, consistency in the curves suggests that the signal is associated with global anisotropy. In the
distance range 153◦–155◦, the four curves all lie close to zero up to cos2 ξ of 0.6, then they diverge
significantly with clear difference between the eastern and western equatorial data (Figure 5.3a).
These curves indicate that the constant anisotropy model has explained most signal associated with
global structure, and the residuals cannot be modelled for additional global anisotropy. In contrast,
data from the 173◦–180◦ distance range are non-zero and show coherent variations when cos2 ξ < 0.8:
all four sets of data are negative when cos2 ξ is small, increase to a maximum of about +1 second
between cos2 ξ of 0.3 and 0.5, and decrease to large negative values (Figure 5.3b). When cos2 ξ > 0.8,
data from the eastern and western equatorial groups differ considerably, but there are only 19 mea-
surements in all, thus they are not a reliable measure of the data trend. Consistency of the four data
subsets at cos2 ξ < 0.8 (where there are more than 3000 measurements) suggests that the misfit in
Figure 5.2(b) is due to a change in global anisotropic properties within the central inner core.

5.2.1 Latitudinal Average Stacking

Longitudinal dependence of inner core anisotropy, in the form of hemispheric variation, has been
proposed by studies based mainly upon differential travel time data (e.g., Tanaka & Hamaguchi, 1997;
Creager, 1999; Garcia & Souriau, 2000; Niu & Wen, 2001). To test if there is strong longitudinal
dependence, travel times are average using ray angle ξ and bottoming longitude φb. Consequently,
any latitudinal variations are averaged, hence this averaging scheme is called “latitudinal average
stacking”. Two locations are assigned to each measurement, ±(90◦ − ξ) latitudes and φb east-
longitude, which are used for cap averaging. For example, travel time of a ray almost parallel to
the symmetry axis is binned into caps near the north and south poles. In contrast, a ray travelling
almost perpendicular to the symmetry axis is averaged into caps at the equator regardless of its
bottoming latitude. If anisotropy varies regionally, if there are anomalous paths, or if the material
is not transversely isotropic, the distribution of latitudinally averaged data will not be dominated
by zonal pattern at degrees 2 and 4 (equation 2.20).

For both 153◦–155◦ and 173◦–180◦ distance ranges, data coverage of latitudinal average is good
even though each cap is required to have at least three measurements (Figure 5.4a). It should be
remembered that there is no simple correspondence between the location of source or receiver at
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Figure 5.2: Observed and Residual Absolute Travel Times
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Comparison of data from the 153◦–155◦ distance range, corresponding to bottoming depths of 275 to
360 km below the inner-core boundary (left) and from the 173◦–180◦ distance range with bottoming
depths in the central 300 km of the core (right).
(a) and (b) Observed travel times (black circles with error bars) in comparison to predictions using
constant anisotropy model SPRI0 (Ishii et al., 2002a; black curve) with zero line in grey. Standard
deviation of the mean is shown as the error bar.
(c) and (d) Residual travel times (green circles with error bars) after the effects due to constant
anisotropy model have been removed. The blue circles in (c) are residuals if data from the anomalous
path between South Sandwich Islands and Alaska are excluded. Note that the constant anisotropy
model slightly overpredicts the data trend without the anomalous data.
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Figure 5.3: Residuals of Four Data Subsets
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Travel time residuals from each quadrant as discussed in the previous Chapter are plotted as a
function of cos2 ξ with colours identifying the bottoming region: blue corresponds to east equatorial;
green corresponds to east polar; red corresponds to west equatorial; and yellow corresponds to west
polar. The thin grey line is the zero line.
(a) Data from the distance range between 153◦ and 155◦. There are ∼ 12000 measurements from
this distance range.
(b) Data from the distance range between 173◦ and 180◦. There are more than 3000 measurements
from this distance range.
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Figure 5.4: Latitudinal Average Stacking
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Results of the latitudinal stacking compared between the distance ranges 153◦–155◦ (left) and 173◦–
180◦ (right).
(a) Data coverage. Green dots indicate caps with more than 3 measurements and purple triangles
are those with less than 3 measurements. Note that the coverage is good for both distance ranges.
(b) Cap averages where the size and colour of circles give the magnitude and sign of the observed
travel times before inner core correction. Background curves show the spherical harmonic expansion
of averaged data using angular degrees up to and including 4. Data coverage and distribution should
be symmetric across the equator because each measurement is assigned to ±(90◦ − ξ) latitude.
However, non-symmetric distribution of caps distorts this symmetry.
(c) Same as in (b) except that data have been corrected for effects due to the upper 920 km of the
inner core.

the surface and ray bottoming coordinates. Even regions with a limited number of earthquakes
(e.g., much of the Pacific) can be covered well by the ray bottoming points; mantle tomography
is an instructive example (e.g., Figure 8 of Boschi & Dziewoński, 1999). Averaging the raw travel
times before inner core correction results in a clear zonal pattern for both 153◦–155◦ and 173◦–180◦

distance ranges (Figure 5.4b). However, when effects due to anisotropy in the upper 920 km of the
inner core are removed, residuals from the two distance ranges are significantly different. Residuals
in the 153◦–155◦ are almost zero with a weak degree 2 signal and considerable small-scale variations
(Figures 5.4c). The South Sandwich Islands to Alaska anomalies show up as large negative values in
the western hemisphere at high latitudes (Figures 5.4c). Note that variations at hemispheric scale
are not observed consistently at all latitudes (ray angles), and are only obvious near the poles. In
contrast, residuals from the 173◦–180◦ distance range are much bigger than those from the 153◦–155◦

range, and have coherent degree 4 zonal pattern. This indicates that the signal associated with the
central 300 km of the inner core can be modelled by transverse isotropy with significantly different
characteristics than the bulk inner core.
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Figure 5.5: Power of Spherical Harmonic Coefficients Obtained from Latitudinal Averages
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In order to quantify the dominance of zonal component at degree 4 and to determine its un-
certainty, a Monte-Carlo simulation is performed. The number of travel time measurements for a
given distance range is kept the same as used in obtaining Figure 5.4, but a new set is defined by
randomly picking data from the original set, allowing for multiple inclusions. Latitudinal averages
are calculated for each data set, and the spherical harmonic coefficients obtained from the averages
are analysed. Coefficients between degrees 1 and 4 are compared in Figure 5.5. The zonal component
at degree 4 has strongest power by far.

These results do not change even when the imposed symmetry across the equator is removed
(Figure 5.6b). The South Sandwich Islands to Alaska data are further isolated in the 153◦–155◦ data
distribution. Although non-zonal component is still dominant, data from 153◦–155◦ distance range
show somewhat stronger zonal pattern than in Figure 5.4(b), suggesting that the constant anisotropy
model used to remove effects of the upper 920 km may be slightly over-estimated due to data from
the anomalous path. At antipodal distances, the degree 4 zonal signal persists (Figure 5.4c) even
though the data coverage is poorer (Figure 5.6a). The unique behaviour of data sampling the deepest
part of the Earth appears robustly related to behaviour of the inner-most inner core as a whole.

5.3 Axis of Symmetry

In this section, the antipodal data are analysed for the location of the symmetry axis. A systematic
search for the axis is performed, and uncertainties due to data coverage, weighting, and anomalous
paths are addressed. In order to test robustness, results of the symmetry axis search using different
averaging schemes are compared.

5.3.1 Cylindrical Average Stacking

When searching for the axis of symmetry, data averaged by cos2 ξ or using bottoming longitude φb

are not the most convenient, since averaging must be performed for each axis location. There is a
better averaging scheme for this purpose which does not require data processing with a change in the
symmetry axis, i.e., a scheme that preserves the ray direction of individual measurement. Following
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Figure 5.6: Non-Symmetric Latitudinal Average Stacking
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Results of the latitudinal stacking compared between the distance ranges 153◦–155◦ (left) and 173◦–
180◦ (right).
(a) Same as in Figure 5.4(a) except that the symmetry across the equator is broken. Each datum
is assigned to a single location on the unit sphere (φb and absolute latitude of (90◦ − ξ with sign
determined by the bottoming latitude) instead of two (φb and ±(90◦−ξ)). The coverage deteriorates
slightly compared to (a).
(b) Distribution of cap averages using the non-symmetric method described in (a) for data corrected
for the effect of anisotropy due to the upper 920 km of the inner core.
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Figure 5.7: Cylindrical Average Stacking
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(a) Data coverage for cylindrically averaged data from the 173◦–180◦ distance range. Green circles
are cap locations with more than 3 measurements, and purple triangles are cap locations with less
than 3 measurements. The north pole and the equator are at the centre and periphery of the
map, respectively. For reference, coast lines are shown in grey. Because ray translation is small for
antipodal data, the coverage approaches the distribution of earthquakes and stations.
(b) Cylindrically stacked data with magnitude and sign of the residuals indicated by the size and
colour of circles, respectively. There are three unusually large positive residuals (> 4 seconds) which
are shown by green triangles. In the inversion, data at the equator are included only if cap longitude
is between 0◦ and 180◦. To illustrate spatial variations, global average has been removed from these
data.

Su & Dziewoński (1995), each ray path is translated to the centre of a unit sphere, and the two
intercept points of the ray and the unit sphere, at ±(90◦−ξ) latitudes and φc or φc+180◦ longitudes,
are used to calculate the cap averages. This averaging scheme is referred to as “cylindrical average
stacking”. Physically, this method averages data from parallel rays, and implies that the angle
between any axis of symmetry and a given cap average is the ray angle. Note that this scheme is
not optimal when investigating the lateral variations of anisotropy or identifying anomalous paths,
because data sampling different parts of the inner core (e.g., eastern and western hemispheres) will
be averaged if the rays are parallel.

5.3.2 Results

Initially, data are averaged using the cylindrical stacking technique. There is an implicit 180◦

symmetry in the averaged data, hence only those with positive ray angle latitudes are included in
the analysis. This gives 102 caps with more than 3 measurements with large regions without data
such as under the Pacific (Figure 5.7a). The values of cylindrical averages (Figure 5.7b) are rather
extreme: they are either close to zero or very large (> 1 second). In particular, there are three caps
(shown by green triangles in Figure 5.7b) with unusually large positive values (> 4 seconds). These
anomalous cap averages are included in the data set for inversion, but their effects on axis location
are investigated later in this section. These data are inverted for values of spherical harmonic
coefficients at degrees 0, 2, and 4 in equation (2.20), i.e., the best axis location is the one around
which data show strongest cylindrical (i.e., zonal) distribution. The symmetry axis locations that
are changed systematically in inversions to determine the location where data are well explained.
However, data coverage is neither complete nor uniform (Figure 5.7a), which will influence the axis
location significantly.
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The distribution of variance reduction as a function of axis location shows that the geographic
pole is not the best axis location for the cylindrically averaged data (Figure 5.8a). In fact, the data
have strongest zonal pattern when the axis is tilted to near 120◦E 35◦N. This may be the axis of
symmetry, but it may also be an artifact of the inversion process; data distribution, weighting, and
spatially limited anomalous data, can tilt the symmetry axis.

With uneven data coverage, the axis location tends to be pushed towards a point around which
the holes in data coverage appear zonally. This effect can be mapped by setting both cap averages di
and the weighting ωi in equation (2.21) to unity and solving for the spherical harmonic coefficients
at degrees 2 and 4. Note that the degree 0 term is intentionally ignored. The current coverage with
the cylindrically averaged data (Figure 5.7a) favours the symmetry axis to be beneath Somalia even
though the real axis may be somewhere else (Figure 5.8b). Prescribed weighting on data can distort
the axis locations in a similar manner. For example, if there is a datum with unusually large residual,
a strong weighting on this datum will bring the maximum variance reduction to a location near it,
although a weak weighting may put the maximum elsewhere. Setting all data values to unity and
solving for m in equation (2.21) shows the combined effects due to weighting and data coverage on
the axis location (Figure 5.8c). If the axis of symmetry inferred from data is at one of the locations
preferred by weighting and coverage, its robustness is questionable.

The second factor that might influence the tilt of the symmetry axis is anomalously large data.
For example, the axis of symmetry for the inner core was inferred to be tilted by ∼ 10◦ (Su &
Dziewoński, 1995). However, it was later demonstrated to be a biased result due to travel times from
the South Sandwich Islands to Alaska path (Dziewoński & Su, 1998). To investigate if results for the
inner-most inner core suffer from similar effects, a cap average and its neighbours are systematically
removed from data set, and changes in the location of maximum variance reduction are monitored.
The neighbouring caps are removed due to the extensive cap overlap, since measurements from
a single path can be averaged into several caps. Inversions with 102 data subsets show that the
locations of maximum variance reduction cluster around 120◦E 35◦N except for three subsets where
locations near 50◦W 50◦N are preferred (Figure 5.8d). Inspection of the three unwonted data sets
reveals that the removal of western North America data creates a strong preference for the axis to
be near 50◦W 50◦N due to data coverage. Inversion of the three subsets also show that the local
maximum near 120◦E 35◦N is still well-defined, therefore the three deviants in Figure 5.8(d) are
likely to be artifacts.

The effects due to the three large positive data (> 4 seconds) shown by triangles in Figure 5.7(b)
must also be examined. Because these data are given small weight in the inversion, removing these
values from the data set does not change the results significantly, i.e., the distribution of variance
reduction is similar to that in Figure 5.8(a). The only noticeable change is that a local maximum
near the pole becomes better defined than in Figure 5.8(a). It appears then that the symmetry axis
is robustly located near 120◦E 35◦N based upon cylindrically averaged data. Up to now, the weights
are calculated by taking average of weight assigned to individual measurement as described by Su
& Dziewoński (1995). Experiments with weighting values which are constant, based upon number
of measurements, and the standard deviation produce the maximum near 120◦E 35◦N consistently,
even though some weighting schemes give additional maxima with high variance reductions.

On the other hand, there is a disadvantage in using cylindrically averaged data at antipodal dis-
tance range. This is demonstrated by looking at the largest positive cap average (the largest triangle
in Figure 5.7b). The value of 7 seconds is obtained by averaging 5 measurements. Although there
are enough measurements to average, the 5 measurements are from 5 different earthquakes recorded
at a single station. Recall that calculation of averages for absolute travel times was motivated,
because ISC data suffer from station specific errors. Indeed, unusually large cylindrical averages
occur when there are less than 5 stations contributing to the cap average (Figure 5.9a). Almost
half of the cylindrically averaged caps have less than 5 stations (Figure 5.9b) whereas for latitudinal
averaging, it is less than 15% (Figure 5.9d). This seems to be the reason why there is less scatter in
latitudinally stacked data (Figure 5.9c). Note that variation of cylindrical averages at ±2 seconds
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Figure 5.8: Symmetry Axis Location Using Cylindrical Average Stacks
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(a) Variance reductions obtained as a result of inverting cylindrically averaged data at various axis
locations. The colour scale is linear between 38 and 56% as well as between 56 and 60%.
(b) Effects of uneven data coverage on axis location.
(c) Effects of data coverage and weighting on axis location.
(d) A plot of maximum variance reduction locations (red circles) when a datum and its neighbours
are removed systematically and the set of inversions as in (a) is performed for each data set. The
endpoint of each red curve corresponds to the location of the central datum removed from the
inversion. On the average, 5 to 6 cap averages are removed from the complete data set.

102



Figure 5.9: Cap Averages as a Function of the Number of Stations
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(a) and (c) Cap averaged travel times as a function of the number of stations contributing to a cap.
(a) is for cylindrically averaged stacks and (c) is for latitudinally averaged data with the symmetry
axis at the geographic pole. Data from both the northern and southern hemispheres are considered.
Note that the scales on axes are different for (a) and (c).
(b) and (d) Number of caps as a function of the number of stations. (b) and (d) are based upon the
cylindrical and latitudinal averaging, respectively. There are 86 cylindrically averaged caps out of
204 with measurements reported from less than 5 stations. In contrast, the numbers become 45 out
of 332 for the latitudinal averaging scheme.

level is not due to some station specific errors (Figures 5.9a and c).

Considering that the results using the cylindrical average stacking may suffer from station errors,
another set of inversions is performed using data averaged only in cos2 ξ. Since measurements are
grouped into 10 bins, there are more data available for each average, reducing the undesirable
station effects. Resulting distribution of variance reduction as a function of the axis location has
local maxima near those obtained using cylindrical averages (Figure 5.10). However, the highest
variance reduction occurs when the axis is under western North America, and there are two maxima
near 120◦E 35◦N, one south of Japan, and another within China. High variance reduction at western
North America is partly due to the reduced number of data. This axis location is such that there are
not enough measurements between cos2 ξ of 0.6 and 0.8, and only a small number of measurements
are available for cos2 ξ ranges of 0.5–0.6, and 0.8–0.9. So the maximum at western North America
is associated with poor data coverage. In contrast, none of the locations of high variance reduction
give satisfactory result for latitudinally averaged data. In fact, the rotation axis is the preferred
axis based upon this averaging scheme. These discrepancies indicate that it is premature to identify
the location of the symmetry axis with current set of absolute travel time measurements. In the
following section, anisotropy of the inner-most inner core is determined assuming that the axis of
symmetry is at the geographic pole.
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Figure 5.10: Symmetry Axis Location with Data Averaged by cos2 ξ
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Same as Figure 5.8(a) except that the data used in the inversions are averaged only in terms of
cos2 ξ. The colour scale is linear between 0 and 75%, and between 75 and 95%.

5.4 Anisotropy of the Inner-Most Inner Core

The PKPDF signal associated with the central 300 km of the inner core is so poorly predicted by
the constant anisotropy model SPRI0 that the variance reduction is −15%. Inverting these data
results in a model which predicts dominant dependence of travel times on cos4 ξ (Figure 5.11a), and
the variance reduction is substantially better, 87%. The values of ǫ and σ for the inner-most inner
core are 3.7 and −20%, respectively, which are much larger than those for the bulk inner core (1.8
and −0.67%, respectively). In terms of compressional wave speed variations with ray angle, the two
models of anisotropy differ in two respects (Figure 5.11b). The direction of slowest wave propagation
is perpendicular to the rotation axis for the bulk inner core model but is about 45◦ from the axis
for the inner-most inner core. In addition, the difference in wave speed between fastest and slowest
directions are different by a factor of four, 0.2 and 0.8 km/s for bulk and inner-most inner core,
respectively.

Such a dramatic change in anisotropy at 300 km radius should produce seismically observable
effects. For example, a reflected wave is expected if there is a sharp transition in wave speed.
Furthermore, depending upon whether the wave speed increases or decreases toward the centre,
different phases should be observed at different epicentral distances. If the wave speed increases,
such as when the ray is travelling parallel to the rotation axis (Figure 5.12a), the reflected phase and
the ray travelling through the inner-most 300 km of the core produce a triplication (Figure 5.12b).
In contrast, a decrease in wave speed, such as when the ray is travelling at 45◦ from the rotation axis,
results in a shadow zone, followed by pro- and retro-grade phases from rays travelling through the
inner-most inner core (Figure 5.12c). However, details of such predictions are affected by parameters
which are not well-constrained by the current data set. For example, the discontinuity at 300 km
radius is introduced for convenience: data used in the inversion cannot determine how rapidly or
gradually the transition in anisotropic property occurs. In addition, tilt of the symmetry axis will
bring additional complexity, because a given ray angle within the bulk inner core can have variety
of ray angles within the inner-most inner core if the axis of symmetry is different for two regions of
the inner core.
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Figure 5.11: Model of the Inner-Most Inner Core
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(a) PKPDF data associated with the central 300 km of the inner core (black circles with error bars
given by standard deviation of the mean) and predictions based upon the bulk (green) and inner-
most (red) inner core anisotropy models.
(b) Compressional wave speed variations as a function of ray angle ξ for the two anisotropy models.
Note that because the x-axis is ξ and not cos2 ξ, rays parallel to the rotation axis are on the left of
the plot.

5.5 Discussion

The absolute PKPDF travel time data between 173◦ and 180◦ distance have considerably different
characteristics compared to data from smaller distances. These antipodal data show robust variations
with the ray angle which implies that the property of the inner-most inner core can be described
sufficiently by transverse isotropy, and that higher order anisotropy is not necessary. Analysis of
data suggests that the symmetry axis may be tilted far from the geographic pole, somewhere near
110◦E 35◦N, but better quality and quantity of data are required for more definitive and precise
determination of the symmetry axis location. However, inversions with different axis locations
consistently produce models of anisotropy which are substantially different from that of the bulk
inner core. The model of the inner-most inner core with the symmetry axis at the geographic pole is
characterised by fast and slow wave propagation directions that are parallel and 45◦ to the rotation
axis. The difference between the maximum and minimum wave speeds is four times greater than
that of the bulk inner core.

Theoretical calculations of the elastic parameters of iron, the main constituent of the Earth’s
core, predict a minimum in compressional wave speed at ∼ 50◦ from the direction of maximum speed
(Steinle-Neumann et al., 2001). Experimental results at high pressures also indicate that the lowest
speed occurs at ∼ 45◦ from the direction of fastest wave propagation (Mao et al., 1998). Although
these two results do not agree in the fast direction, they are consistent with the inner-most inner core
model if there is a mechanism that aligns the fast axis with the axis of rotation. In addition, in both
of these mineralogical studies, iron is found to be highly anisotropic with a wave speed difference
of 2 ∼ 2.5 km/s, suggesting that only a fraction of crystal alignment is required to generate the
anisotropic signal observed for the inner-most inner core.
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Figure 5.12: Travel Time Predictions Associated with the Inner-Most Inner Core
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(a) Changes in the compressional wave speed with radius. Assuming that the symmetry axis is
always at the poles, wave speeds for rays travelling parallel (blue curve) and at 45◦ (black dashed
curve) to the rotation axis are compared with wave speed in PREM (Dziewoński & Anderson, 1981;
grey thin curve). Note that the wave speed decreases from bulk to the inner-most inner core if the
ray is travelling at 45◦ angle from the symmetry axis, but increases if the ray is parallel to the axis.
No offset is included (i.e., the value of η0 in equation (2.16) is ignored).
(b) Travel time prediction for a ray travelling parallel to the symmetry axis (blue curve). Because the
speed increases in the inner-most inner core, there is a triplication. Reflection from the discontinuity
at 300 km radius is shown by yellow curve which is barely visible on this plot.
(c) Travel time prediction for a ray travelling at 45◦ from the symmetry axis (red curve). Because
wave speed decreases at the centre, there is a shadow zone between 160◦ and 170◦ distances followed
by pro- and retro-grade phases.
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Chapter 6

Summary Discussion

The previous Chapters offer models of the mantle and the inner core that contain both expected and
surprising features. There are vast implications, and the models give insight into the current state
and possible evolution process occurring within the Earth. In this Chapter, some consequences of the
models not focused on in earlier Chapters are presented, along with discussion of other approaches
and data available to better understand the internal structure of the Earth.

6.1 Mantle

The distribution of density anomalies show unexpected de-correlation from wave speed models.
However, this observation is consistent with mounting evidence that the lower-most mantle contains
variations in both temperature and chemistry. Seismological studies using various data and methods
draw similar conclusions (e.g., Su & Dziewoński, 1997; Ritsema et al., 1998; van der Hilst & Kárason,
1999; Masters et al., 2000c; Ni et al., 2002) as well as mineralogical consideration of the scaling
ratio (Karato & Karki, 2001). Attempts to separate temperature and composition contributions to
seismic wave speed variations, using temperature and composition derivatives given by experiments,
indicate that variations in seismic waves alone cannot reliably distinguish the two contributions
(Forte & Mitrovica, 2001). Density model adds valuable constraints for this problem, although such
investigations also require well-determined derivatives from mineral physics.

Density models can also be used to probe the dynamics of the mantle. For example, calculation
of the local Bullen parameter (determined in a similar manner as laterally varying scaling ratios)
suggests that values for the plumes in the lower-most mantle are consistent with a thermo-chemical
origin of these plumes (Matyska & Yuen, 2002). Moreover, the Bullen parameters obtained using
the density model imply that the mantle is not as adiabatic as commonly assumed. This view of
the mantle has significant impact on a wide range of geosciences. In addition, studies of mantle
rheology can utilise the density model rather than converting seismic wave speed models to density
distributions. Because the density model differs considerably from wave speed models, it may lead
to a viscosity profile that is unlike existing models.

These applications assume that the density model reflects the real density distribution within
the mantle. There is a debate on the resolvability of density variations using mode data, and most
studies argue that the sensitivity is not sufficient to constrain density heterogeneities independently
(e.g., Resovsky & Ritzwoller, 1999b; Romanowicz, 2001; Masters et al., 2000b; Kuo & Romanowicz,
2002). These studies use various techniques on mode data to obtain greatly differing models, but the
data set is often different from study to study. In some cases, only a small number of data is used.
Furthermore, some studies make certain assumptions, such as confining density variations within
a given layer, which are unrealistic. Chapter 3 addressed issues of resolution, but a discussion on
potential improvements in density modelling from future data set appears appropriate.
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The splitting function coefficients used in this study by no means represent the full data set
that can be extracted from normal modes. There are modes whose splitting coefficients have not
yet been measured, and the angular degree s of splitting coefficients can be extended to higher
values. Consideration of splitting coefficients with larger angular degree allows for modelling of
smaller structure both in wave speed and density perturbations. On the other hand, additional
splitting data from currently unavailable modes provide better constraints on wave speed variations
but not very much on density. This is because the density sensitivity kernel become oscillatory in
radius, i.e., these modes approach the body wave regime. Splitting data from coupled modes are
not abundant and are practically ignored in this study, but they can provide further constraints on
even, as well as odd, degree structures. It has also been noted that the effects of mode interaction
may be more significant than is generally assumed, even for isolated modes (Deuss & Woodhouse,
2001). This influence may affect splitting coefficient measurements, and subsequently alter mantle
structure. Therefore coupled mode analysis is necessary to improve the mode database for better
constraining the internal structure.

Because many modes, for which gravitational restoring force is important, have already been
analysed, a dramatic improvement on the resolution of low degree density structure seems unlikely
from future mode measurements. Alternatively, one can look for better constraints on seismic wave
speeds. If seismic wave speed variations are known perfectly, the density contribution to splitting
functions can be isolated and modelled. It is impossible to have perfect wave speed models, but there
are numerous data for improving these models. Additional mode splitting, body waves, and surface
wave data can be inverted simultaneously to obtain perturbations in wave speed (e.g., Bolton, 1996;
Masters et al., 1996). Better wave speed models may help to limit trade-off between density and
wave speed variations.

There are also non-seismological data with sensitivity to density within the mantle. One of
these, the free air gravity anomaly, has been modelled in Chapter 3 based upon a static approach
using topography on various discontinuities. Replacing topography by viscosity, i.e., switching to
a dynamic approach, will permit inclusion of other geodynamical data for density modelling. Such
data, e.g., glacial rebound and plate velocity, have poor depth resolution, but will provide much
desired information about low degree structure. However, there will inevitably be a trade off between
density and viscosity, and combining the linear mode problem with non-linear geodynamic data may
not be simple.

Finally, there are neutrinos. Two flavours of neutrinos exist, electron and mu, and the trans-
formation of one flavour to another, called neutrino oscillation, is sensitive to the density of the
medium in which neutrinos travel. In theory, this sensitivity can be exploited to constrain internal
density variations of the Earth. However, neutrinos are easily altered by small changes in density,
much smaller than the uncertainty associated with the radial density profile. In addition, obtaining
good coverage, i.e., depth resolution, is difficult, if not impossible. To relate neutrino oscillation to
density variations, one must have a controlled neutrino source (rather than neutrinos from the Sun),
which are distributed more sparsely than earthquakes. It is also unlikely that a world-wide network
of expensive neutrino detectors will be available in the near future to improve coverage. Therefore
the prospect of neutrino tomography seems improbable.

Chapter 3 investigates large-scale variations in elastic parameters and density within the mantle,
but one aspect not considered here is the lateral variations in attenuation. This structure is difficult
to constrain, because signal due to attenuation is hard to distinguish from other effects such as
focusing and defocusing. Nonetheless, lateral variation in attenuation has been estimated using
body and surface wave data (Reid et al., 2001; Romanowicz & Gung, 2002). If the imaginary part
of the splitting matrix H (equation 2.3) can be constrained reliably, it will be possible to constrain
large-scale variations in attenuation using normal mode data.
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6.2 Inner Core

The mechanism responsible for development of anisotropy of the inner core is not understood, but
there are various hypotheses. Preferential alignment of iron crystals at the inner-core boundary
during inner core growth has been argued as one possible mechanism. This type of models rely
on the effects of spheroidal (Karato, 1993b) and toroidal (Buffett & Wenk, 2001) magnetic fields,
or texturing produced by rotation (Bergman, 1997). These processes predict anisotropy that is
strongest at the surface without much variation with radius. Alternatively, flow within the inner
core may align iron crystals. Thermal convection driven by internal heating is a possibility (e.g.,
Jeanloz & Wenk, 1988), although it is difficult to put radiogenic elements into the inner core (e.g., Ito
et al., 1993; Parker et al., 1996). Other hypotheses include flow induced by Maxwell stresses (Karato,
1999) or by preferential growth of the inner core along its equator due to uneven heat removal by
outer core convection (Yoshida et al., 1996). In the latter model, the inner core tries to return to
its hydrostatic equilibrium position, driving flow to align crystals (Yoshida et al., 1996). Anisotropy
due to large-scale internal flow is likely to vary little with radius. Another mechanism for inner core
anisotropy involves survival of domains that are aligned with the lowest strain energy within the
inner core (Stevenson, 1996; Song, 1997). This process predicts increasing crystal alignment with
depth.

Because discrepancies exist in the fast and slow directions of hexagonal close packed iron crystals
under inner core conditions (e.g., Stixrude & Cohen, 1995; Mao et al., 1996; Steinle-Neumann et al.,
2001), observed anisotropic behaviour cannot be used to determine which of the above hypotheses are
more probable than others. For example, the two arguments using spheroidal and toroidal magnetic
fields (Karato, 1993b; Buffett & Wenk, 2001) predict crystal alignments which are perpendicular to
one another. However, there are mineral physical estimates of iron with fast directions differing by
90◦, so either mechanism can be compatible with observed anisotropy. On the other hand, changes
in anisotropic strength with radius can be used to distinguish various hypotheses. The simple radial
profile of SPRI0, suggests that the preferential survival of domains as the cause of anisotropy is
unlikely.

The requirement of anisotropy near the inner core boundary provides another constraint on the
manner of inner core growth. A mushy zone at the top of the inner core has been proposed to occur
as a transition zone from liquid to solid core (e.g., Fearn et al., 1981). This layer must be very
thin to accommodate anisotropy observed near the inner core boundary. In fact, this observation
is consistent with an earlier demonstration of sharp transition from outer to inner core based upon
high frequency waves reflected from the inner core boundary (Engdahl et al., 1970).

Although the simple anisotropy model reconciles a variety of seismic observations, there are
several outstanding questions, such as the source of apparent hemispheric dichotomy and residual
splitting functions. Unlike the density model of the mantle, these questions can be addressed with
improved databases and approaches. For example, splitting measurements of more inner core modes
will determine if higher order anisotropy or superposition of two different transversely isotropic
models is required to explain the residual signal. Better quality and quantity of travel time data
will allow for identification of the source of anomalous observations. In particular, better station
coverage may provide data from rays travelling in different directions for a given portion of the
inner core, such as the part sampled by the South Sandwich Islands to Alaska path. This would be
ideal in distinguishing whether the extreme travel times are associated with unusual anisotropy or
isotropic heterogeneity. Finally, most diagnostic information on inner core anisotropy is obtained by
the directional dependence of PKJKP travel times. However, observation of this phase is difficult
and controversial (Okal & Cansi, 1998; Deuss et al., 2000) let alone variations with the direction of
propagation.

There are other issues of inner core that are not addressed in this study. The possibility of
the tilted axis of symmetry has been suggested by various researchers with the amount of tilt
ranging from 5 to 10 degrees from the rotation axis (e.g., Shearer & Toy, 1991; Creager, 1992; Su &
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Dziewoński, 1995; Song & Richards, 1996; McSweeney et al., 1997). Some of the studies rely heavily
upon a limited number of paths (e.g., South Sandwich Islands to Alaska) to determine the location
of the optimal axis of symmetry. A global analysis of absolute travel time data, such as the one
presented for the inner-most inner core, combined with normal mode constraints, should provide a
valuable contribution to this problem. Since travel time coverage at smaller epicentral distances is
much better than that at nearly antipodal distances, more reliable results should be attainable.

Another observation with a significant consequence on the dynamics of the inner core is its
super rotation. The eastward rotation was first reported using both differential (Song & Richards,
1996) and absolute (Su et al., 1996) travel times. This observation is consistent with theoretical
calculations and simulations of the geomagnetic field which predict strong torque on the inner core
due to electromagnetic coupling (e.g., Gubbins, 1981; Glatzmaier & Roberts, 1995b; Aurnou et al.,
1996; Kuang & Bloxham, 1997). An alternative source of inner core super rotation is gravitational
interaction between the inner core and the mantle, which can also produce results that are consistent
with seismic observations (Buffett & Creager, 1999). The initial investigations of inner core rotation
based upon travel times suggested rates of few degrees per year (Song & Richards, 1996; Su et
al., 1996), but subsequent studies have reduced the rate to a value much less than one degree per
year, between 0.05 to 0.6 degrees a year (Creager, 1997; Song, 2000). Temporal changes in splitting
function of inner core modes have also been analysed for super rotation, giving a nearly zero rate
(Sharrock & Woodhouse, 1998; Laske & Masters, 1999). These observations assume either tilted
axis of symmetry or lateral variations within the inner core. A better constraint on super rotation
may be obtained once these assumptions are verified. There is also a suggestion that the absolute
travel time data can be separated into time dependent and stationary signals (Dziewoński, 2000)
which should also be considered in future investigations.

Although it is more difficult to constrain than anisotropy of wave speed, knowledge of anelasticity,
especially its radial dependence, provides additional information about the inner core. Attenuation
within the inner core is stronger than other parts of the Earth (e.g., Sacks, 1969; Cormier, 1981;
Widmer et al., 1991), and there are suggestions that it varies with frequency (e.g., Doornbos, 1983;
Cummins & Johnson, 1988; Cormier et al., 1998). This frequency dependence of attenuation is
controversial with some studies preferring frequency independence in the upper inner core (e.g.,
Bhattacharyya et al., 1993; Souriau & Roudil, 1995). The resolution of depth dependence of atten-
uation is also argued for (e.g., Souriau & Roudil, 1995) and against (e.g., Niazi & Johnson, 1992;
Bhattacharyya et al., 1993). Anisotropy in attenuation has been suggested to exist based upon a
mechanism for elastic anisotropy (Carcione & Cavallini, 1994). Due to uneven coverage and possible
contaminations from sources outside the inner core, anisotropic anelasticity is difficult to resolve,
but attempts have been made to observe this effect (Souriau & Romanowicz, 1996).

6.3 Inner-Most Inner Core

The inner-most inner core, introduced to explain the peculiar behaviour of absolute travel times
from antipodal distances, is a small sphere of 300 km radius within the inner core. It constitutes
less than 0.01% of the Earth’s volume; its location and size make observations scarce. Because it
is so small, finite frequency effects may become significant. Studies of ray sensitivity based upon
Born approximation have shown that waves are insensitive to structure along its path, but sensitive
to a broad region around it (e.g., Dahlen et al., 2000). The area of insensitivity, the Fresnel zone,
is roughly the square root of the product of the wavelength and path length of the ray, and for the
antipodal rays used to infer the inner-most inner core, the width of this zone is about 300 km. It
is broad and should be considered in future studies, but it is not broad enough to hide the entire
inner-most inner core. In addition, because of the constant anisotropy model fits to data between
165◦ and 173◦, the main effect of the broad sensitivity kernel is to make the inner-most inner core
much smaller than the current estimate.

The existence of the inner-most inner core with a distinct seismic behaviour poses many questions.
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Material properties at such high pressures and temperatures are not well understood enough to
determine whether the inner-most inner core can be explained by a phase change or if it requires
change in composition. Furthermore, gravity in this region is nearly zero, which may affect the
development of crystal structure. With so little information for guidance, one needs to speculate
on the consequences, origin, and the role of the inner-most inner core in the evolution of the Earth.
The distinct anisotropy may be a preserved region from the time when the Earth differentiated, and
the tilt of the axis and the development of subsequent bulk inner core anisotropy may be due to a
subsequent cataclysmic event. Alternatively, if inner core anisotropy is induced by the magnetic field
generated in the outer core (e.g., Karato, 1993b; Buffett & Wenk, 2001), the change of anisotropy in
the inner core signifies a major change in the dominant pattern of the magnetic field as inner core
grew. These two scenarios require that the unique anisotropy of the inner-most inner core survive
through the Earth’s history. It would not be compatible with the theory of anisotropy developed by
degree 1 convection within the inner core (e.g., Jeanloz & Wenk, 1988; Romanowicz et al., 1996),
but the dynamics of the inner core is poorly known.

One useful and important key to unlocking the secrets of the inner-most inner core is its density.
It is not an easily obtained parameter, but if enough measurements of the characteristic frequency
of radial modes with high overtone number are made, it may be possible to resolve if the density
changes from bulk to inner-most inner core. These modes possess sensitivity to the central 300 km
of the core, and are convenient since their resonance peaks are not affected by the non-sphericity of
the Earth. The complexities in the travel time table predicted from the inner-most inner core model
suggest that high quality arrival time measurements will also provide valuable information on the
properties of the inner-most inner core. To obtain such data, a densely spaced linear array in the 15◦

range of antipodal distance from a relatively active source region is required. With improvements
in global coverage of seismometers and projects such as the USArray with its “flexible” component,
or even a one-year deployment of broad band seismographs below the ocean bottom, it might be
possible to conduct a more detailed survey of the distinct anisotropy that characterises the very
center of the Earth.

6.4 Outer Core

Throughout the study, the outer core has been assumed to be seismologically homogeneous. There
have been studies which argued for structure in the outer core (e.g., Ritzwoller et al., 1986; Widmer et
al., 1992; Vasco & Johnson, 1998; Boschi & Dziewoński, 2000). Recent proposals of a sediment layer
underneath the core-mantle boundary (Buffett et al., 2000) and possible isolation of light elements
within the tangent cylinder (Hollerbach & Jones, 1995; Olson et al., 1999) have motivated some
studies in which inner core sensitive data are modelled for outer core heterogeneity (Romanowicz &
Bréger, 2000; Romanowicz et al., 2003). This is an important question that must be addressed in
order to better model the inner core. The the investigation of the outer core is likely to benefit more
by an analysis of data that are not sensitive to the inner core. Rather than forcing signals that might
originate within the inner core into the outer core, data such as PKPBC, PKPAB, PKPBC−PKPAB,
and splitting of mantle modes should be used to provide bounds on the strength of outer core
heterogeneity.
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Tkalčić, H., Romanowicz, B., & Houy, N., 2002. Constraints on D” structure using PKP(AB−DF),
PKP(BC−DF) and PcP−P travel time data from broadband records. Geophys. J. Int. 148,
599–616.

Tromp, J., 1993. Support for anisotropy of the Earth’s inner core from free oscillations. Nature
366, 678–681.

Tromp, J., 1995a. Normal-mode splitting observations from the Great 1994 Bolivia and Kuril Islands
earthquakes: Constraints on the structure of the mantle and inner core. GSA Today 5, 137–151.

Tromp, J., 1995b. Normal-mode splitting due to inner-core anisotropy. Geophys. J. Int. 121,
963–968.

Tromp, J., & Zanzerkia, E., 1995. Toroidal splitting observations from the great 1994 Bolivia and
Kuril Islands earthquakes. Geophys. Res. Lett. 22, 2297–2300.

Turcotte, D.L., & Schubert, G., 1982. Geodynamics: Applications of Continuum Physics to Geolog-
ical Problems. John Wiley & Sons, Inc., New York.

van der Hilst, R.D., & Kárason, H., 1999. Composition heterogeneity in the bottom 1000 kilometers
of Earth’s mantle; toward a hybrid convection model. Science 283, 1885–1888.

van der Hilst, R.D., Widiyantoro, S., & Engdahl, E.R., 1997. Evidence for deep mantle circulation
from global tomography. Nature 386, 578–584.

van der Hilst, R.D., Widiyantoro, S., Creager, K.C., & Sweeney, T.J., 1998. Deep subduction
and aspherical variations in P -wavespeed at the base of Earth’s mantle. in The Core-Mantle
Boundary Region, edited by M. Gurnis, M.E. Wysession, E. Knittle, and B.A. Buffett, pp. 5–20,
American Geophysical Union, Washington DC.

Vasco, D.W., & Johnson, L.R., 1998. Whole Earth structure estimated from seismic arrival times.
J. Geophys. Res. 103, 2633–2671.

Vasco, D.W., Johnson, L.R., Pulliam, R.J., & Earle, P.S., 1994. Robust inversion of IASP91 travel
time residuals for mantle P and S velocity structure, earthquake mislocations, and station cor-
rections. J. Geophys. Res. 99, 13727–13755.

Vidale, J.E., & Hedlin, M.A.H., 1998. Intense scattering at the core-mantle boundary north of
Tonga: Evidence for partial melt. Nature 391, 682–685.
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